Skip to main content
Log in

Lead contamination of an agricultural soil in the vicinity of a shooting range

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, coupled Pb concentration/Pb isotope data were used to evaluate the effect of a shooting range (operational for over 30 years) on Pb contamination of adjacent agricultural soils and the associated environmental risks. Lead was mainly concentrated in the arable layer of the contaminated agricultural soils at total concentrations ranging from 573 to 694 mg kg − 1. Isotopic analyses (206Pb/207Pb) proved that Pb originated predominantly from the currently used pellets. Chemical fractionation analyses showed that Pb was mainly associated with the reducible fraction of the contaminated soil, which is in accordance with its predominant soil phases (PbO, PbCO3). The 0.05 M EDTA extraction showed that up to 62% of total Pb from the contaminated site is potentially mobilizable. Furthermore, Pb concentrations obtained from the synthetic precipitation leaching procedure extraction exceeded the regulatory limit set by the United States Environmental Protection Agency for drinking water. Ion exchange resin bags showed to be inefficient for determining the vertical distribution of free Pb2 +  throughout the soil profile. Increased Pb concentrations were found in the biomass of spring barley (Hordeum vulgare L.) sampled at the studied site and two possible pathways of Pb uptake have been identified: (1) through passive diffusion-driven uptake by roots and (2) especially through atmospheric deposition, which was also proved by analyses of a bioindicator species (bryophyte Hypnum cupressiforme Hedw.). This study showed that shooting ranges can present an important source of Pb contamination of agricultural soils located in their close vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst (London), 133, 25–46. doi:10.1039/b711896a.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Chen, M., Hardison, D. W., & Harris, W. G. (2003a). Lead transformation and distribution in the soils of shooting ranges in Florida, USA. The Science of the Total Environment, 307, 179–189. doi:10.1016/S0048-9697(02)00543-0.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Chen, M., Hardison, D. W., & Harris, W. G. (2003b). Weathering of lead bullets and their environmental effects at outdoor shooting ranges. Journal of Environmental Quality, 32, 526–534.

    Article  CAS  Google Scholar 

  • Chen, M., & Daroub, S. H. (2002). Characterization of lead in soils of a rifle/pistol shooting range in Central Florida, USA. Soil and Sediment Contamination, 11, 1–17. doi:10.1080/20025891106664.

    Article  Google Scholar 

  • Chrastný, V., Komárek, M., Jírovcová, E., & Štíchová, J. (2008). A critical evaluation of the 0.05 M EDTA extraction of Pb from forest soils. International Journal of Environmental Analytical Chemistry, 88, 385–396. doi:10.1080/03067310701744283.

    Article  CAS  Google Scholar 

  • Craig, J. R., Rimstidt, J. D., Bonnaffon, C. A., Collins, T. K., & Scanlon, P. F. (1999). Surface water transport of lead at a shooting range. Bulletin of Environmental Contamination and Toxicology, 63, 312–319. doi:10.1007/s001289900982.

    Article  CAS  Google Scholar 

  • Dermatas, D., Cao, X., Tsaneva, V., Shen, G., & Grubb, D. G. (2006). Fate and behavior of metal(loid) contaminants in an organic matter-rich shooting range soil: Implications for remediation. Water, Air, and Soil Pollution, 6, 143–155. doi:10.1007/s11267-005-9003-4.

    Article  CAS  Google Scholar 

  • Dermatas, D., Chrysochoou, M., Grubb, D. G., & Xu, X. (2008). Phosphate treatment of firing range soils: Lead fixation or phosphorus release? Journal of Environmental Quality, 37, 47–56. doi:10.2134/jeq2007.0151.

    Article  CAS  Google Scholar 

  • Hardison, D. W., Ma, L. Q., Luongo, T., & Harris, W. G. (2004). Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. The Science of the Total Environment, 328, 175–183. doi:10.1016/j.scitotenv.2003.12.013.

    Article  CAS  Google Scholar 

  • Kalra, Y. P., & Maynard, D. G. (1994). A comparison of extractants for the determination of cation exchange capacity and extractable cations by a mechanical vacuum extractor. Communications in Soil Science and Plant Analysis, 25, 1505–1515. doi:10.1080/00103629409369131.

    Article  CAS  Google Scholar 

  • Knechtenhofer, L. A., Xifra, I. O., Scheinost, A. C., Flührer, H., & Kretzschmar, R. (2003). Fate of heavy metals in a strongly acidic shooting range soil: Small-scale metal distribution and its relation to preferential water flow. Journal of Plant Nutrition and Soil Science, 166, 84–92. doi:10.1002/jpln.200390017.

    Article  CAS  Google Scholar 

  • Komárek, M., Chrastný, V., Ettler, V., & Tlustoš, P. (2006). Evaluation of extraction/digestion techniques used to determine lead isotopic composition in forest soils. Analytical and Bioanalytical Chemistry, 385, 1109–1115. doi:10.1007/s00216-006-0543-x.

    Article  CAS  Google Scholar 

  • Komárek, M., Ettler, V., Chrastný, V., & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: A review. Environment International, 34, 562–577. doi:10.1016/j.envint.2007.10.005.

    Article  CAS  Google Scholar 

  • Lin, Z. (1996). Secondary mineral phases of metallic lead in soils of shooting ranges from Orebro County, Sweden. Environmental Geology, 27, 370–375. doi:10.1007/BF00766707.

    Article  CAS  Google Scholar 

  • Lin, Z., Comet, B., Qvarfort, U., & Herbert, R. (1995). The chemical and mineralogical behaviour of Pb in shooting range soils from central Sweden. Environmental Pollution, 89, 303–309. doi:10.1016/0269-7491(94)00068-O.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Hardison, D. W., Harris, W. G., Cao, X., & Zhou, Q. (2007). Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water, Air, and Soil Pollution, 178, 297–307. doi:10.1007/s11270-006-9198-7.

    Article  CAS  Google Scholar 

  • McCarty, D. K., Moore, J. N., & Marcus, W. A. (1998). Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions. Applied Geochemistry, 13, 165–176. doi:10.1016/S0883-2927(97)00067-X.

    Article  CAS  Google Scholar 

  • Quevauviller, P. (1998). Operationally defined extraction procedures for soil and sediment analysis. Trends in Analytical Chemistry, 17, 289–298. doi:10.1016/S0165-9936(97)00119-2.

    Article  CAS  Google Scholar 

  • Rantalainen, M. L., Torkkeli, M., Strömmer, R., & Setälä, H. (2006). Lead contamination of an old shooting range affecting the local ecosystem—a case study with a holistic approach. The Science of the Total Environment, 69, 99–108. doi:10.1016/j.scitotenv.2006.05.005.

    Google Scholar 

  • Rauret, G., López-Sanchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., et al. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233. doi:10.1039/b001496f.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Bischofberger, S., Stoll, A., Schroer, D., Furrer, G., Roulier, S., et al. (2008). Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications. Environmental Pollution, 153, 668–676. doi:10.1016/j.envpol.2007.08.034.

    Article  CAS  Google Scholar 

  • Rooney, C. P., McLaren, R. G., & Condron, L. M. (2007). Control of lead solubility in soil contaminated with lead shot: Effect of soil pH. Environmental Pollution, 149, 149–157. doi:10.1016/j.envpol.2007.01.009.

    Article  CAS  Google Scholar 

  • Sakurai, Y., Murayama, S., Makino, T., Maejima, Y., & Sugahara, K. (2007). Chemical form of soluble cadmium and copper in arable soils and its implication to their mobility. JARQ—Japan Agricultural Research Quarterly, 41, 139–145.

    CAS  Google Scholar 

  • Szczepaniak, K., & Biziuk, M. (2003). Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environmental Research, 93, 221–230. doi:10.1016/S0013-9351(03)00141-5.

    Article  CAS  Google Scholar 

  • Stansley, W., & Roscoe, D. E. (1996). The uptake and effects of lead in small mammals and frogs at a trap and skeet range. Archives of Environmental Contamination and Toxicology, 30, 220–226. doi:10.1007/BF00215801.

    Article  CAS  Google Scholar 

  • USGS (2007). Lead in April 2007. Mineral industry surveys. U.S. Geological Survey.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Komárek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrastný, V., Komárek, M. & Hájek, T. Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ Monit Assess 162, 37–46 (2010). https://doi.org/10.1007/s10661-009-0774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0774-3

Keywords

Navigation