Skip to main content
Log in

Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper presents information about airborne mesophilic bacteria in the indoor and outdoor air of child day-care centers (CDCCs) in the city of Edirne, Turkey. Air samples were collected using the Petri plate gravitational settling method from the indoor and outdoor air of CDCCs. Counts of airborne bacteria were measured as colony forming units (CFU) collected by gravity onto Brain Heart Infusion Agar plates (with 5% sheep blood). Samples were taken monthly over a period of 12 months between January and December 2004. A total of 3,120 bacteria colonies were counted on 192 Petri plates. Four groups of culturable bacteria were identified: Gram-positive cocci, Gram-positive bacilli, endospore-forming Gram-positive bacilli, and Gram-negative bacteria. Airborne Gram-positive bacteria were the most abundant at more than 95% of the measured population. While Gram-positive cocci were more common in indoor environments, Gram-positive bacilli were more dominant in outdoor air. Bacteria commonly isolated from CDCCs were identified at a genus level. Staphylococcus (39.16%), Bacillus (18.46%), Corynebacterium (16.25%), and Micrococcus (7.21%) were dominant among the genera identified in the present study. The dominant genera identified in the day-care centers were Staphylococcus, Micrococcus, and Corynebacterium for indoor air and Bacillus, Corynebacterium, and Staphylococcus for outdoor air. Staphylococcus, Streptococcus, Bacillus, and Corynebacterium genera were found in samples from every month. Bacterial colony counts were compared by sampling location (indoors and outdoors), seasons, and meteorological factors. We found negative correlations between the monthly total outdoor bacterial counts and the sampling day’s average relative humidity and average rainfall, and the monthly average rainfall. Fluctuations in bacterial counts in different seasons were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbes, S. J., Sever, M., Mehta, J., Collette, N., Thomas, B., & Zeldin, D. C. (2005). Exposure to indoor allergens in day-care facilities: Results from 2 North Carolina counties. Journal of Allergy and Clinical Immunology, 116, 133–139. doi:10.1016/j.jaci.2005.04.022.

    Article  Google Scholar 

  • Awad, A. H. A. (2007). Airborne dust, bacteria, actinomycetes and fungi at a flourmill. Aerobiologia, 23, 59–69. doi:10.1007/s10453-007-9049-z.

    Article  Google Scholar 

  • Awad, A. H. A., Khoder, M. I., & Emad, A. A. (2007). Fertile fungal spores collected on different faced surfaces in the atmosphere of Giza, Egypt. Aerobiologia, 23, 47–57. doi:10.1007/s10453-007-9049-z.

    Article  Google Scholar 

  • Aydogdu, H., & Asan, A. (2008). Airborne fungi in child day care centers in Edirne City, Turkey. Environmental Monitoring and Assessment, 147, 423–444. doi:10.1007/s10661-007-0130-4.

    Article  Google Scholar 

  • Aydogdu, H., Asan, A., Otkun, M. T., & Ture, M. (2005). Monitoring of fungi and bacteria in the indoor air of primary schools in Edirne City, Turkey. Indoor and Built Environment, 14, 411–425. doi:10.1177/1420326X05057539.

    Article  CAS  Google Scholar 

  • Baron, E. J., Peterson, L. R., & Finegold, S. M. (1994). Bailey and Scott’s diagnostic microbiology (958 pp., 9th edn.). St Louis, USA: Mosby-Year Book, Inc.

    Google Scholar 

  • Bartlett, K. H., Kennedy, S. M., Brauer, M., Netten, C. V., & Dill, B. (2004). Evaluation and determinants of airborne bacterial concentrations in school classrooms. Journal of Occupational and Environmental Hygiene, 1, 639–647. doi:10.1080/15459620490497744.

    Article  Google Scholar 

  • Bovallius, A., Bucht, B., Roffey, R., & Anas, P. (1978). Three-year investigation of the natural airborne bacterial flora at four localities in Sweden. Applied and Environmental Microbiology, 35, 847–852.

    CAS  Google Scholar 

  • Di Giorgio, C., Krempff, A., Guiraud, H., Binder, P., Tiret, C., & Dumenil, G. (1995). Atmospheric pollution by airborne microorganisms in the city of Marseilles. Atmospheric Environment, 30, 155–160. doi:10.1016/1352-2310(95)00143-M.

    Google Scholar 

  • Dunder, T., Tapiainen, T., Pokka, T., & Uhari, M. (2007). Infections in child day care centers and later development of asthma, allergic rhinitis, and atopic dermatitis. Archives of Pediatrics & Adolescent Medicine, 161, 972–977. doi:10.1001/archpedi.161.10.972.

    Article  Google Scholar 

  • Fabian, M. P., Miller, S. L., Reponen, T., & Her nandez, M. T. (2005). Ambient bioaerosol indices for indoor air quality assessments of flood reclamation. Aerosol Science, 36, 763–783. doi:10.1016/j.jaerosci.2004.11.018.

    Article  CAS  Google Scholar 

  • Fang, Z., Ouyang, Z. Y., Hu, L. F., Wang, X. K., & Lin, X. O. (2005). Community structure and ecological distribution of airborne microbes in summer in Beijing. Acta Ecologica Sinica, 25, 83–88.

    Google Scholar 

  • Fang, Z., Ouyang, Z. Y., Zheng, H., Wang, X., & Hu, L. (2007). Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology, 54, 487–496. doi:10.1007/s00248-007-9216-3.

    Article  Google Scholar 

  • Fischer, G., Albrecht, A., Jäckel, U. & Kämpfer, P. (2008). Analysis of airborne microorganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations. International Journal of Hygiene and Environmental Health, 211, 132–142. doi:10.1016/j.ijheh.2007.05.003.

    Article  Google Scholar 

  • Godish, D. R., & Godish, T. J. (2007). Relationship between sampling duration and concentration of culturable airborne mould and bacteria on selected culture media. Journal of Applied Microbiology, 102, 1479–1484. doi:10.1111/j.1365-2672.2006.03200.x.

    Article  CAS  Google Scholar 

  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’ s manual of determinative bacteriology (9th edn.). USA: Williams & Wilkins.

    Google Scholar 

  • Howard, B. J., Klaas, J. I. I., Rubin, S. J., Weissfeld, A. S., & Tilton, R. C. (1987). Clinical and pathogenic microbiology (968 pp.). St Louis: The, C, V. Mosby Company.

    Google Scholar 

  • Jaffal, A. A., Banat, I. M., El Mogheth, A. A., Nsanze, H., Bener, A., & Ameen, A. S. (1997). Residential indoor airborne microbial populations in the United Arab Emirates. Environment International, 23, 529–533. doi:10.1016/S0160-4120(97)00055-X.

    Article  Google Scholar 

  • Kahan, E., Gross, S., & Cohen, H. A. (2005). Exclusion of ill children from child-care centers in Israel. Patient Education and Counseling, 56, 93–97. doi:10.1016/j.pec.2003.12.012.

    Article  Google Scholar 

  • Kalogerakis, N., Paschali, D., Lekaditis, V., Pantidou, A., Eleftheriadis, K., & Lazaridis, M. (2005). Indoor air quality-bioaerosol measurements in domestic and office premises. Aerosol Science, 36, 751–761. doi:10.1016/j.jaerosci.2005.02.004.

    Article  CAS  Google Scholar 

  • Kim, K. Y., & Kim, C. N. (2007). Airborne microbiological characteristics in public buildings of Korea. Building and Environment, 42, 2188–2196. doi:10.1016/j.buildenv.2006.04.013.

    Article  Google Scholar 

  • Koneman, E. W., Allen, S. D., Janda, W. M., Schreckenberger, P. C., & Winn, W. C. (1997). Color atlas and textbook of diagnostic microbiology (1395 pp., 5th edn.) Philadelphia, New York: Lippincott.

    Google Scholar 

  • Koskinen, O. M., Husmana, T. M., Hyvarinen, A. M., Reponen, T. A., & Nevalainen, A. I. (1997). Two moldy day-care centers: A follow-up study of respiratory symptoms and infections. lndoor Air, 7, 262–268.

    Article  Google Scholar 

  • Law, A. K. Y., Chau, C. K., & Chan, G. Y. S. (2001). Characteristics of bioaerosol profile in office buildings in Hong Kong. Building and Environment, 36, 527–541. doi:10.1016/S0360-1323(00)00020-2.

    Article  Google Scholar 

  • Lee, W. K., & Young, B. W. Y. (2006). Infectious diseases in children admitted from a residential child care centre. Hong Kong Medical Journal, 12, 119–124.

    CAS  Google Scholar 

  • Mahdy, H. M., & El-Sehrawi, M. H. (1997). Airborne bacteria in the atmosphere of El-Taif region Saudi Arabia. Water, Air, and Soil Pollution, 98, 317–324.

    CAS  Google Scholar 

  • Masuda, K., Masuda, R., Nishi, J. I., Tokuda, K., Yoshinaga, M., & Miyata, K. (2002). Incidences of nasopharyngeal colonization of respiratory bacterial pathogens in Japanese children attending day-care centers. Pediatrics International, 44, 376–380. doi:10.1046/j.1442-200X.2002.01587.x.

    Article  Google Scholar 

  • Mui, K. W., Wong, L. T., & Hui, P. S. (2008). Risks of unsatisfactory airborne bacteria level in air-conditioned offices of subtropical climates. Building and Environment, 43, 475–479. doi:10.1016/j.buildenv.2007.01.012.

    Article  Google Scholar 

  • Murray, P. R., Baron, E. J., Jorgensen, J. H., Pfaller, M. A., & Yolken, R. H. (2003). Manual of clinical microbiology (8th edn.). Washington, D.C.: ASM Pres.

    Google Scholar 

  • Nafstad, P., Jaakkola, J. J. K., Skrondal, A., & Magnus, P. (2004). Day care center characteristics and children’s respiratory health. Indoor Air, 15, 69–75. doi:10.1111/j.1600-0668.2004.00310.x.

    Article  Google Scholar 

  • Nevalainen, A., & Seuri, M. (2005). Of microbes and men. Indoor Air, 15, 58–64. doi:10.1111/j.1600-0668.2005.00344.x.

    Article  Google Scholar 

  • Nilsson, A., Kihlstr, E., Lagesson, V., Wess, B., Szponar, B., Larsson, L., et al. (2004). Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air, 14, 74–82. doi:10.1046/j.1600-0668.2003.00178.x.

    Article  CAS  Google Scholar 

  • Pastuszka, J. S., Paw, U. K. T., Lis, D. O., Wlazlo, A., & Ulfig, K. (2000). Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmospheric Environment, 34, 3833–3842. doi:10.1016/S1352-2310(99)00527-0.

    Article  CAS  Google Scholar 

  • Pönkä, A., Poussa, T., & Laosmaa, M. (2004). The effect of enhanced hygiene practices on absences due to infectious diseases among children in day care centers in Helsinki. Infection, 32, 2–7. doi:10.1007/s15010-004-3036-x.

    Article  Google Scholar 

  • Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21, 1–19. doi:10.1007/s10453-004-5872-7.

    Article  Google Scholar 

  • Salonen, H., Lappalainen, S., Lindroos, O., Harju, V., & Reijula, K. (2007). Fungi and bacteria in mould-damaged and non-damaged Office environments in a subarctic climate. Atmospheric Environment, 41, 6797–6807. doi:10.1016/j.atmosenv.2007.04.043.

    Article  CAS  Google Scholar 

  • Sarica, S., Asan, A., Otkun, M. T., & Ture, M. (2002). Monitoring indoor airborne fungi and bacteria in the different parts of Trakya University Hospital (Edirne-Turkey). Indoor and Built Environment, 11, 285–292. doi:10.1177/1420326X0201100505.

    Article  Google Scholar 

  • Seino, K., Takano, T., Nakamura, K., & Watanabe, M. (2005). An evidential example of airborne bacteria in a crowded, underground public concourse in Tokyo. Atmospheric Environment, 39, 337–341. doi:10.1016/j.atmosenv.2004.09.030.

    Article  CAS  Google Scholar 

  • Shaffer, B. T., & Lighthart, B. (1997). Survey of airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal. Microbial Ecology, 34, 167–177. doi:10.1007/s002489900046.

    Article  Google Scholar 

  • Shahamat, M., Levin, M., Rahman, I., Grim, C., Heidelberg, J., Stelma, G., et al. (1997). Evaluation of media for recovery of aerosolized bacteria. Aerobiologia, 13, 219–226. doi:10.1007/BF02694489.

    Article  Google Scholar 

  • Thacker, S. B., Addiss, D. G., Goodman, R. A., Holloway, B. R., & Spencer, H. C. (1992). Infectious-diseases and injuries in child day-care—opportunities for healthier children. Jama-Journal of the American Medical Association, 268, 1720–1726. doi:10.1001/jama.268.13.1720.

    Article  CAS  Google Scholar 

  • Tong, Y., & Lighthart, B. (2000). The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Science and Technology, 32, 393–403. doi:10.1080/027868200303533.

    Article  CAS  Google Scholar 

  • Yalcin, S. S., Tugrul, B., Cetinkaya, S., Cakir, B., & Yilmaz, A. (2004). Effect of total attending period on infection episode rate in a child-care center. Pediatrics International, 46, 555–560. doi:10.1111/j.1442-200x.2004.01950.x.

    Article  Google Scholar 

  • Zhu, H., Phelan, P. E., Duan, T., Raupp, G. B., Fernando, H. J. S., & Che, F. (2003). Experimental study of indoor and outdoor airborne bacterial concentrations in Tempe, Arizona, USA. Aerobiologia, 19, 201–211. doi:10.1023/B:AERO.0000006571.23160.8a.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Asan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydogdu, H., Asan, A. & Tatman Otkun, M. Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environ Monit Assess 164, 53–66 (2010). https://doi.org/10.1007/s10661-009-0874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0874-0

Keywords

Navigation