Skip to main content
Log in

Enhanced uptake of heavy metals in municipal solid waste compost by turfgrass following the application of EDTA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Enhancement of multiple heavy metal uptake from municipal solid waste (MSW) compost by Lolium perenne L. in a field experiment was investigated with application of EDTA. EDTA was added in solution at six rates (0–30 mmol kg − 1) after 50 days of plant growth. Two weeks later, plants were harvested for the first crop and then all the turfgrasses were mowed. After another 30 days of growth, EDTA was added again at above six rates to the corresponding sites and the second crop was harvested 2 weeks later. The results showed that EDTA significantly increased heavy metal accumulation in both crops of L. perenne. For the first crop, the concentrations of Mn, Ni, Cd, and Pb in the shoots increased remarkably with increasing EDTA supply, peaked at 25 mmol kg − 1 EDTA, and shoots of 0–5 cm height (shoots from medium surface to 5 cm height) had higher metal concentrations than 5–10 cm and >10 cm shoots. The highest concentration of Mn, Ni, Cd, and Pb was 2.3-, 2.3-, 2.6-, and 3.2-fold, respectively, in 0–5 cm shoots higher than control. For the second crop, the concentrations of Mn, Cu, and Pb in shoots were, in general, less than those in the first crop. However, the second crop was significantly higher (P < 0.05) than the first crop in dry biomass, so the total amount of metals removed by the second crop was more than the first crop. In addition, EDTA significantly increased the translocation ratios of most heavy metals from roots to shoots. For the first crop, 38% of the total Zn, 51% of Cd, 49% of Pb, 60% Mn, 55% Ni, and 45% Cu taken up by the plant was translocated in the shoots of 0–5 cm height. Turfgrass would have potential for use in remediation of heavy metals in MSW compost or contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Annabi, M., Houot, S., Francou, C., Poitrenaud, M., & LeBissonnais, Y. (2007). Soil aggregate stability improvement with urban composts of different maturities. Soil Science Society of America Journal, 71, 413–423. doi:10.2136/sssaj2006.0161.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zacharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865. doi:10.1021/es960552a.

    Article  Google Scholar 

  • Boonyapookana, B., Parkpian, P., Techapinyawat, S., DeLaune, R. D., & Jugsujinda, A. (2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 40, 117–137. doi:10.1081/ESE-200033621.

    Google Scholar 

  • Breslin, V. T. (1999). Retention of metals in agricultural soils after amending with MSW and MSW–biosolids compost. Water, Air, and Soil Pollution, 109, 163–178. doi:10.1023/A:1005026131978.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1983). Plant uptake of inorganic waste constituents. In J. F. Parr, P. B. Marsh, & J. S. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge: Noyes Data.

    Google Scholar 

  • Chen, H., & Cutright, T. (2001). EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21–28. doi:10.1016/S0045-6535(01)00031-5.

    Article  CAS  Google Scholar 

  • Chen, Y. H., Shen, Z. G., & Li, X. D. (2004a). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19, 1553–1565. doi:10.1016/j.apgeochem.2004.02.003.

    Article  CAS  Google Scholar 

  • Chen, Y. X., Shi, J. Y., Zhang, W. D., Lin, Q., & Tian, G. M. (2004b). EDTA and industrial waste water improving the bioavailability of different Cu forms in contaminated soil. Plant and Soil, 261, 117–125. doi:10.1023/B:PLSO.0000035564.43591.20.

    Article  CAS  Google Scholar 

  • Clemente, R., Walker, D. J., & Berna, M. P. (2005). Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environmental Pollution, 138, 46–58. doi:10.1016/j.envpol.2005.02.019.

    Article  CAS  Google Scholar 

  • Cooper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., & Berti, W. R. (1999). Chelate-assisted phytoextraction of lead from contaminated soils. Journal of Environmental Quality, 28, 1709–1719.

    CAS  Google Scholar 

  • Cox, D., Bezdicek, D., & Fauci, M. (2001). Effects of compost, coal ash, and straw amendments on restoring the quality of eroded Palouse soil. Biology and Fertility of Soils, 33(5), 365–372. doi:10.1007/s003740000335.

    Article  CAS  Google Scholar 

  • Cui, Y., Wang, Q., Dong, Y., Li, H., & Christie, P. (2004). Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA. Plant and Soil, 261, 181–188. doi:10.1023/B:PLSO.0000035551.22918.01.

    Article  CAS  Google Scholar 

  • Duo, L. A., GAO, Y. B., & Zhao, S. L. (2005). Heavy metal accumulation and ecological responses of turfgrass to rubbish compost with EDTA addition. Journal of Integrative Plant Biology, 47, 1047–1054. doi:10.1111/j.1744-7909.2005.00135.x.

    Article  CAS  Google Scholar 

  • Epstein, A. L., Gussman, C. D., Blaylock, M. J., Yermiyahu, U., Huang, J. W., Kapulnik, Y., et al. (1999). EDTA and Pb–EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant and Soil, 208, 87–94. doi:10.1023/A:1004539027990.

    Article  CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236. doi:10.1016/S0960-8524(00)00108-5.

    Article  CAS  Google Scholar 

  • Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinskaya, M., et al. (1999). Use of plant roots for phytoremediation and molecular farming. Proceedings of the National Academy of Sciences of the United States of America, 96, 5973–5977. doi:10.1073/pnas.96.11.5973.

    Article  CAS  Google Scholar 

  • Grčman, H., Velikonja-Bolta, Š., Vodnik, D., Kos, B., & Leštan, D. (2001). EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil, 235, 105–114. doi:10.1023/A:1011857303823.

    Article  Google Scholar 

  • Guidi, G., Pera, A., Giovannetti, M., Poggio, G., & Bertoldi, M. (1988). Variations of soil structure and microbial population in a compost amended soil. Plant and Soil, 106, 113–119. doi:10.1007/BF02371202.

    Article  Google Scholar 

  • Hargreaves, J. C., Adl, M. S., & Warman, P. R. (2008). A review of the use of composted municipal solid waste in agriculture. Agriculture Ecosystems & Environment, 123, 1–14. doi:10.1016/j.agee.2007.07.004.

    Article  Google Scholar 

  • He, X. T., Traina, S. J., & Logan, T. J. (1992). Chemical properties of municipal solid waste composts. Journal of Environmental Quality, 21, 318–319.

    CAS  Google Scholar 

  • Heil, D. M., Samani, Z., Hanson, A. T., & Rudd, B. (1999). Remediation of lead contaminated soil by EDTA. I. Batch and column studies. Water, Air, and Soil Pollution, 113, 77–95. doi:10.1023/A:1005032504487.

    Article  CAS  Google Scholar 

  • Hovsepyan, A., & Greipsson, S. (2005). EDTA-enhanced phytoremediation of lead-contaminated soil by corn. Journal of Plant Nutrition, 28, 2037–2048. doi:10.1080/01904160500311151.

    Article  CAS  Google Scholar 

  • Huang, J. W., Chen, J., Berti, W. R., & Cunningham, S. D. (1997). Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environmental Science & Technology, 31, 800–805. doi:10.1021/es9604828.

    Article  CAS  Google Scholar 

  • Jordão, C. P., Nascentes, C. C., Cecon, P. R., Fontes, R. L. F., & Pereira, J. L. (2006). Heavy metal availability in soil amended with composted urban solid wastes. Environmental Monitoring and Assessment, 112, 309–326. doi:10.1007/s10661-006-1072-y.

    Article  CAS  Google Scholar 

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., Gupta, S. K., et al. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environmental Science & Technology, 34, 1778–1783. doi:10.1021/es990697s.

    Article  CAS  Google Scholar 

  • Keller, C., Hammer, D., Kayser, A., Richner, W., Brodbeck, M., & Sennhauser, M. (2003). Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant and Soil, 249, 67–81. doi:10.1023/A:1022590609042.

    Article  CAS  Google Scholar 

  • Lai, H. Y., & Chen, Z. S. (2003). Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, 55, 421–430. doi:10.1016/j.chemosphere.2003.11.009.

    Article  CAS  Google Scholar 

  • Liphadzi, M. S., Kirkham, M. B., Mankin, K. R., & Paulsen, G. M. (2003). EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant and Soil, 257, 171–182. doi:10.1023/A:1026294830323.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2001). Phytoremediation of heavy-metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1919–1926.

    CAS  Google Scholar 

  • Luo, C., Shen, Z., & Li, X. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11. doi:10.1016/j.chemosphere.2004.09.100.

    Article  CAS  Google Scholar 

  • Merkl, N., Schultze-kraft, R., & Infante, C. (2005). Assessment of tropical grass and legumes for phytoremediation of petroleum-contaminated soils. Water, Air, and Soil Pollution, 165, 195–209. doi:10.1007/s11270-005-4979-y.

    Article  CAS  Google Scholar 

  • McGrath, S. P. (1998). Phytoextraction for soil remediation. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals (pp. 261–287). Wallingford: CABI.

    Google Scholar 

  • Mkhabela, M. S., & Warman, P. R. (2005). The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia. Agriculture Ecosystems & Environment, 106, 57–67. doi:10.1016/j.agee.2004.07.014.

    Article  CAS  Google Scholar 

  • Panwar, B. S., Ahmed, K. S., & Mittal, S. B. (2002). Phytoremediation of nickel-contaminated soils by Brassica species. Environment, Development and Sustainability, 4, 1–6. doi:10.1023/A:1016337132370.

    Article  Google Scholar 

  • Pathan, S. M., Aylmore, L. A. G., & Colmer, T. D. (2003). Soil properties and turf growth on a sandy soil amended with fly ash. Plant and Soil, 256, 103–114. doi:10.1023/A:1026203113588.

    Article  CAS  Google Scholar 

  • Piechalak, A., Tomaszewska, B., & Baraşkiewicz, D. (2003). Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry, 64, 1239–1251. doi:10.1016/S0031-9422(03)00515-6.

    Article  CAS  Google Scholar 

  • Poschenrieder, C., Bech, J., Llugany, M., Pace, A., Fenés, E., & Barceló, J. (2001). Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremediation. Plant and Soil, 230, 247–256. doi:10.1023/A:1010374732486.

    Article  CAS  Google Scholar 

  • Quiroz, A., Espinosa-Garcia, F., & Ilangovan, K. (2002). Effects of natural hydrosoluble chelates of three plant species on the mobilization of heavy metals. Bulletin of Environmental Contamination and Toxicology, 68, 862–869. doi:10.1007/s00128-002-0034-5.

    Article  CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., et al. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474. doi:10.1038/nbt0595-468.

    Article  CAS  Google Scholar 

  • Sartori, G., Ferrari, A., & Pagliai, M. (1985). Changes in soil porosity and surface shrinkage in a remolded, saline clay soil treated with compost. Soil Science, 139, 523–530. doi:10.1097/00010694-198506000-00008.

    Article  Google Scholar 

  • Solhi, M., Shareatmadari, H., & Hajabbasi, M. A. (2005). Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus. Water, Air, and Soil Pollution, 167, 59–71. doi:10.1007/s11270-005-8089-7.

    Article  CAS  Google Scholar 

  • Soumaré, M., Tack, F. M. G., & Verloo, M. G. (2003). Ryegrass response to mineral fertilization and organic amendment with municipal solid waste compost in two tropical agricultural soils of Mali. Journal of Plant Nutrition, 26, 1169–1188.

    Article  CAS  Google Scholar 

  • Stewart, B. A., Robinson, C. A., & Parker, D. B. (2000). Examples and case studies of beneficial reuse of beef cattle by-products. In W. A. Dick (Eds.), Land application of agricultural, industrial, and municipal by-products (pp. 387–407). Madison: Soil Science Society of America.

    Google Scholar 

  • Thayalakumaran, T., Robinson, B. H., Vogeler, I., Scotter, D. R., Clothier, B. E., & Percivalt, H. J. (2003). Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil. Plant and Soil, 254, 415–423.

    Article  CAS  Google Scholar 

  • Wolkowski, R. P. (2003). Nitrogen management considerations for landspreading municipal solid waste compost. Journal of Environmental Quality, 32, 1844–1850.

    Article  CAS  Google Scholar 

  • Wu, L. H., Luo, Y. M., Xing, X. R., & Christie, P. (2004). EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture Ecosystems & Environment, 102, 307–318.

    Article  CAS  Google Scholar 

  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. V., & Stoffella, P. J. (2004). Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 259, 181–189.

    Article  CAS  Google Scholar 

  • Zhuang, P., Ye, Z. H., Lan, C. Y., Xie, Z. W., & Shu, W. S. (2005). Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant and Soil, 276, 153–162.

    Article  CAS  Google Scholar 

  • Zennaro, M., Cristofori, F., Formigoni, D., Frignani, F., & Pavoni, B. (2005). Heavy metal contamination in compost. A possible solution. Annali di Chimica, 95, 247–256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Duo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duo, L.A., Lian, F. & Zhao, S.L. Enhanced uptake of heavy metals in municipal solid waste compost by turfgrass following the application of EDTA. Environ Monit Assess 165, 377–387 (2010). https://doi.org/10.1007/s10661-009-0953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0953-2

Keywords

Navigation