Skip to main content
Log in

The placement strategies of structural best management practices for different moving rainstorms

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Hydrological responses and pollutant exports are always highly related to rainfall characteristics. Many studies have demonstrated that the influence of moving rainstorm on flows and mass transport process in hydrologic systems cannot be ignored. Best management practices (BMPs) are popularly applied for controlling water quantity and water quality in a watershed. Since the movements of rainstorm can influence watershed responses, BMP placement strategies should be suitably adjusted in different moving rainstorms. This study designed an intermediate rainfall pattern with varied movement behavior and tried to find the optimal BMP placement strategies, which cannot only satisfy environmental standards but also improve economic benefits, for the rainfall events. The result shows that the control efficiency of pollutant and runoff can highly improve when the BMPs are set near the outlet of a watershed. Since the economic efficiency is always regarded as an important factor, the BMP placement strategy is significant for watershed conservation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedient, P. B., & Huber, W. C. (2002). Hydrology and floodplain analysis. Upper Saddle River, NJ, USA: Prentice-Hall.

    Google Scholar 

  • Chang, C. L. (2007). Influence of the pattern of moving rainstorms on watershed responses in a conceptual catchment. Environmental Engineering Science, 24(10), 1353–1360. doi:10.1089/ees.2006.0220.

    Article  CAS  Google Scholar 

  • Chang, C. L., Chiueh, P. T., & Lo, S. L. (2007). Effect of spatial variability of storm on the optimal placement of best management practices (BMPs). Environmental Monitoring and Assessment, 135(1–3), 383–389. doi:10.1007/s10661-007-9657-7.

    Article  CAS  Google Scholar 

  • Chang, C. L., Lo, S. L., & Yu, S. L. (2005a). Applying fuzzy theory and genetic algorithm to interpolate precipitation. Journal of Hydrology (Amsterdam), 314, 92–104. doi:10.1016/j.jhydrol.2005.03.034.

    Article  Google Scholar 

  • Chang, C. L., Lo, S. L., & Yu, S. L. (2005b). Interpolating precipitation and its relation to runoff and non-point source pollution. Journal of Environmental Science and Health-Part A, 40(10), 1963–1973.

    CAS  Google Scholar 

  • Chaubey, I., Haan, C. T., Grunwald, S., & Salisbury, J. M. (1999). Uncertainty in the model parameters due to spatial variability of rainfall. Journal of Hydrology (Amsterdam), 220, 48–61. doi:10.1016/S0022-1694(99)00063-3.

    Article  Google Scholar 

  • Dijk, A. I. J. M. V., Bruijnzeel, L. A., & Rosewell, C. J. (2002). Rainfall intensity-kinetic energy relationships: A critical literature appraisal. Journal of Hydrology (Amsterdam), 261, 1–23. doi:10.1016/S0022-1694(02)00020-3.

    Article  Google Scholar 

  • Faures, J. M., Goodrich, D. C., Woolhiser, D. A., & Soroosh, S. (1995). Impact of small-scale spatial variability on runoff modeling. Journal of Hydrology (Amsterdam), 173, 309–326. doi:10.1016/0022-1694(95)02704-S.

    Article  Google Scholar 

  • Hromadka, T. V. (1996a). A rainfall-runoff probabilistic simulation program: 1. Synthetic data generation. Environmental Software, 11(4), 235–242. doi:10.1016/S0266-9838(96)00013-5.

    Article  Google Scholar 

  • Hromadka, T. V. (1996b). A rainfall-runoff probabilistic simulation program: 2. Synthetic data analysis. Environmental Software, 11(4), 243–249. doi:10.1016/S0266-9838(96)00014-7.

    Article  Google Scholar 

  • Jensen, M. (1984). Runoff pattern and peak flows from moving block rains based on linear time–area curve. Nordic Hydrology, 15, 155–168.

    Google Scholar 

  • Lima, J. L. M. P. D., & Singh, V. P. (2002). The influence of the pattern of moving rainstorms on overland flow. Advances in Water Resources, 25, 817–828. doi:10.1016/S0309-1708(02)00067-2.

    Article  Google Scholar 

  • Lima, J. L. M. P. D., Singh, V. P., & Lima, M. I. P. D. (2003). The influence of storm movement on water erosion: storm direction and velocity effects. Catena, 52, 39–56. doi:10.1016/S0341-8162(02)00149-2.

    Article  Google Scholar 

  • Lu, S. Y., Cheng, J. D., & Brooks, K. N. (2001). Managing forests for watershed protection in Taiwan. Forest Ecology and Management, 143, 77–85. doi:10.1016/S0378-1127(00)00507-7.

    Article  Google Scholar 

  • Mostaghimi, S., Park, S. W., Cooke, R. A., & Wang, S. Y. (1997). Assessment of management alternatives on a small agricultural watershed. Water Research, 31(8), 1867–1878. doi:10.1016/S0043-1354(97)00018-3.

    Article  CAS  Google Scholar 

  • Pan, C. H. (1997). The optimal strategies of best management practices in a watershed. Taipei: Department of Civil Engineering, National Taiwan University, R.O.C. (in Chinese)

    Google Scholar 

  • Sample, D. J., Heaney, J. P., Wright, L. T., Fan, C. Y., Lai, F. H., & Field, R. (2003). Costs of best management practices and associated land for urban stormwater control. Journal of Water Resources Planning and management, 129(1), 59–68.

    Article  Google Scholar 

  • Singh, V. P. (1998). Effect of the direction of storm movement on planar flow. Hydrological Processes, 12, 147–170. doi:10.1002/(SICI)1099-1085(199801)12:1<147::AID-HYP568>3.0.CO;2-K.

    Article  Google Scholar 

  • Tisdale, T. S., Kaighn, R. J., & Yu, S. L. (1996). The Virginia storm (VAST) model for stormwater management—User’s Guide version 6.0. Charlottesville, Virginia, USA: University of Virginia.

    Google Scholar 

  • U.S. Army Corps of Engineers, Hydrologic Engineering Center (USACE-HEC) (1977). Storage, treatment, overflow, runoff model, STORM, USACE-HEC. Davis, California.

  • Wanielista, M. P., & Yousef, A. Y. (1993). Stormwater management. New York: Wiley.

    Google Scholar 

  • Watts, L. G., & Calver, A. (1991). Effects of spatially-distributed rainfall on runoff for a conceptual catchment. Nordic Hydrology, 22, 1–14.

    Google Scholar 

  • Yu, S. L., Stanford, R. L., & Zhai, Y. Y. (2003a). Virginia stormwater model for windows—User’s Manual version 1.0. Charlottesville, Virginia, USA: University of Virginia.

    Google Scholar 

  • Yu, S. L., Zhen, X. Y., & Zhai, Y. Y. (2003b). Development of a BMP placement strategy for VDOT. Charlottesville, VA, USA: Department of Civil Engineering, University of Virginia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Ling Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CL., Liou, TY. The placement strategies of structural best management practices for different moving rainstorms. Environ Monit Assess 166, 495–502 (2010). https://doi.org/10.1007/s10661-009-1018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1018-2

Keywords

Navigation