Skip to main content
Log in

Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na + ), potassium (K + ), calcium (Ca + ), magnesium (Mg + ), bicarbonate \(({\rm HCO}_{3}^{-})\), sulfate \(({\rm SO}_{4}^{-})\), phosphate \(({\rm PO}_{4}^{-})\), and silica (H4SiO4) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock–water interaction with significant evaporation prevails in hard rock region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, G. B., Barnes, C. J., Hughes, M. W., & Leaney, F. W. J. (1984). Effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Isotope Hydrology 1983, IAEA Symposium 270, September 1983, Vienna, 105–123.

  • APHA (1998). Standard methods for the examination of water and wastewater (19th ed.). Washington DC: APHA, USASS.

    Google Scholar 

  • Aravindan, S., Manivel, M., & Chandrasekar, S. V. N. (2004). Groundwater quality in the hard rock area of the Gadilam river basin, Tamilnadu. Journal of Geological Society of India, 63, 625–635.

    CAS  Google Scholar 

  • Atkinson, T. C. (1983). Growth mechanism of speleotherms in Castleguard Cave, Colombia ice fields, Alberta, Canada. Artic and Alpine Research, 15(4), 523–536.

    Article  Google Scholar 

  • Baskaran, S., Ransley, T., Brodie, R. S., & Baker, P. (2005). Investigating groundwater–river interactions using environmental tracers. Canberra: Bureau of Rural Sciences.

    Google Scholar 

  • Berner, R. A. (1974). Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorous and silicon in anoxic marine sediments. The Sea, v.5, d. E.D. Goldberg (pp. 427-450). New York: Wiley.

    Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., Anandhan, P., Srinivasamoorthy, K., & Prasanna, M. V. (2005). A comparative study on the coastal surface and ground water in and around Puduchattiram to Coleroon, Tamil Nadu. International Journal of Ecology and Environment Sciences, 31(3), 209–306 Special Issue.

    Google Scholar 

  • Chidambaram, S., Prasanna, M. V., Vasu, K., Shahul Hameed, A., Unnikrishna Warrier, C., Srinivasamoorthy, K., et al. (2007). Study on the stable isotope signatures in groundwater of Gadilam river basin, Tamilnadu, India. Indian Journal of Geochemistry, 22(2), 209–221.

    CAS  Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Anandhan, P., Srinivasamoorthy, K., & Vasudevan, S. (2008). A statistical approach to identify the hydrogeochemically active regimes in groundwaters of Erode district, Tamilnadu. Asian Journal of Water, Environment and Pollution, 5(3), 93–102.

    CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrology. New York: Lewis.

    Google Scholar 

  • Darling, W. G., & Bath, A. H. (1988). A stable isotope study of recharge processes in the English chalk. Journal of Hydrology, 101, 31–46.

    Article  CAS  Google Scholar 

  • Domenico, P. A., & Schwartz, W. (1990). Physical and chemical hydrogeology (p. 824). New York: Wiley.

    Google Scholar 

  • Freeze, A. R., & Cherry, J. A. (1979). Groundwater (p. 604). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gnanasundar, D., & Elango, L. (1999). Groundwater quality assessment of a coastal aquifer using geoelectrical techniques. Journal of Environmental Hydrology, 7(2), 1–8.

    Google Scholar 

  • Gowrisankaran, S., Sengupta, S. R., & Muthuraman, S. (1992). Depressurization of Neyveli aquifer. Unpublished technical report, Neyveli Lignite Corporation.

  • Hem, J. D. (1959). Geochemistry of water calculation and use of ion activity. USGS water supply, 1935 C, 17p.

  • Jacks, G. (1973). Chemistry of ground water in a district in Southern India. Journal of Hydrology, 18, 185–200.

    Article  CAS  Google Scholar 

  • Lamontagne, S., Leaney, F., & Herczeg, A. (2002). Streamwater–groundwater interactions: the river Murray at Hattah–Kulkyne park, Victoria: summary of results. CSIRO Technical Report 27/02.

  • Pawar, N. J. (1985). Hydrogeochemistry of Pune metropolis with special reference to the chemistry of surface and groundwater. Unpublished Ph.D. thesis, University of Poona, 182p.

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–923.

    Google Scholar 

  • Prasanna, M. V. (2008). Hydrogeochemical studies in the Gadilam river basin, Tamilnadu. Unpublished Ph.D. thesis, Annamalai University, 300p.

  • Prasanna, M. V., Chidambaram, S., Vasu, K., Shahul Hameed, A., Unikrishna Warrier, C., Srinivasamoorthy, K., et al. (2007). Geochemical nature of groundwater in the Gadilam River Basin, Tamilnadu, India. Journal of Applied Geochemists, 10(1), 113–122.

    Google Scholar 

  • Ramanathan, A. L., Subramanian, V., Ramesh, R., Chidambaram, S., & James, A. (1999). Environmental geochemistry of Pichavaram ecosystem (tropical), southeast coast of India. Environmental Geology, 37(3), 223–233.

    Article  CAS  Google Scholar 

  • Raymahashay, B. C. (1986). Geochemistry of bicarbonate in river water. Journal of Geological Society of India, 27, 114–118.

    CAS  Google Scholar 

  • Satheesh Herbert Singh, D., & Lawrence, J. F. (2007). Groundwater quality assessment of shallow aquifer using geographical information system in part of Chennai city, Tamilnadu. Journal of Geological Society of India, 69, 1067–1076.

    Google Scholar 

  • Simpson, H. J., & Herczeg, A. (1991). Salinity and evaporation in the river Murray river basin, Australia. Journal of Hydrology, 124, 1–27.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K. (2004). Hydrogeochemistry of groundwater in Salem District, Tamilnadu, India. Unpublished Ph.D. thesis, Annamalai University.

  • Wigley, T. (1973). The incongruent dissolution of dolomite. Geochimica et Cosmochimica Acta, 37, 1397–1402.

    Article  CAS  Google Scholar 

  • Wigley, T. M. L. (1976). Effect of mineral precipitation on isotopic composition and C14 dating of groundwater. Nature, 263, 219–221.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Viswanathan Prasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, M.V., Chidambaram, S., Shahul Hameed, A. et al. Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess 168, 63–90 (2010). https://doi.org/10.1007/s10661-009-1092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1092-5

Keywords

Navigation