Skip to main content

Advertisement

Log in

Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Problems associated with heavy metal characterization in the majority of sites are often due to multiple sources of pollution. This work presents the results through the use of advanced statistical techniques to identify sources of soil heavy metals in a typical Mediterranean city. The multivariable analysis performed on seven metals identified four sources controlling their variability. Cr, Mn, and Ni contents were associated to soil parent materials; Cd and Pb contents were related to anthropogenic activities, specifically industrial activities and traffic; Cu content is controlled by long-term application of inorganic fertilizers in agricultural areas. Finally, zinc concentration is associated to commercial and outdoor activities in the area. These results were supported by the fact that metals associated to parent material (Cr, Mn, and Ni) were better correlated with soil lithogenic properties, while anthropogenic metals were correlated with more variable soil constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in the terrestrial environment. Biogeochemistry, bioavailability and risk of metals (2nd ed., p. 880). New York: Springer.

    Google Scholar 

  • Albasel, N., & Cottenie, A. (1985). Heavy metal contamination near major highways, industrial and urban areas in Belgian grassland. Water, Air and Soil pollution, 24, 103–109.

    Article  CAS  Google Scholar 

  • Alloway B. C. (1995). The origin of heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soil. (2nd ed., p. 368).

  • Andrades, M. (1996). Prácticas de Edafología y Climatología (pp. 14–16). In Universidad de la Rioja (Ed.). Logroño, La Rioja, España.

  • Aubert, H., & Pinta, M. (1977). Trace elements in soil. Amsterdam: Elsevier.

    Google Scholar 

  • Birke, M., & Rauch, U. (2000). Urban geochemistry in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 233–248.

    Article  CAS  Google Scholar 

  • Bowman, W. S., Faye, G. H., Sutarno, R., McKeague, J. A., & Kodama, H. (1979). Soil samples SO-1, SO-2, SO-3 and SO-4—certified reference materials (p. 34). CANMET Report 79-3, CANMET Mining and Mineral Sciences Laboratories, Ottawa, ON.

  • Brady, N. C., & Weil, R. R. (2001). The nature and properties of soils (13th ed., p. 960). Englewood: Prentice Hall.

    Google Scholar 

  • Bretzel, F., & Calderisi, M. (2006). Metal contamination in urban soils of coastal. Tuscany (Italy). Environmental Monitoring and Assessment, 118, 319–335.

    Article  CAS  Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Creating continuous surfaces from point data. In P. A. Burrough, M. F. Goodchild, R. A. McDonnell, P. Switzer, & M. Worboys (Eds.), Principles of geographic information systems. Oxford: Oxford University Press.

    Google Scholar 

  • C.R.E.M. (2006). Murcia en cifras. 2. Evolución de la población según el Padrón Municipal de Habitantes. Centro Regional de Estadística de Murcia.

  • Celine, S. L., Xiangdong, L., Wenzhong, S., Sharon, C., & Iain, T. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.

    Article  Google Scholar 

  • Colgan, A., Hankard, P. K., Spurgeon, D. J., Svendsen, C., Wadsworth, R. A., & Weeks, J. M. (2003). Closing the loop: A spatial analysis to link observed environmental damage to predicted heavy metal emissions. Environmental Toxicology and Chemistry, 22, 970–976.

    Article  CAS  Google Scholar 

  • De Miguel, E., Jiménez de Grado, J., Llamas, J. F., Martín-Dorado, A., & Mazadiego, L. F. (1998). The overlooked contribution of compost application of the trace element load in the urban soil of Madrid (Spain). Science of the Total Environment, 215, 113–122.

    Article  Google Scholar 

  • De Mora, S., Sheikholeslami, M. R., Wyse, E., Azemard, S., & Cassi, R. (2004). An assessment of metal contamination in coastal sediments of the Caspian Sea. Marine Pollution Bulletin, 48, 61–77.

    Article  Google Scholar 

  • De Temmerman, L., Vanongeval, L., Boon, W., & Hoenig, M. (2003). Heavy metal content of arable soil in Northern Belgium. Water, Air and Soil Pollution, 148, 61–76.

    Article  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Fakayode, S. O., & Onianwa, P. C. (2002). Heavy metals contamination of soil, and bioaccumulation in Guinea grass (Panicum maximun) around Ikeja Industrial estate, Lagos, Nigeria. Environmental Geology, 43, 145–150.

    Article  CAS  Google Scholar 

  • FAO-ISRIC (1990). Guidelines for soil description (3rd ed., p. 70). Roma: F.A.O.

    Google Scholar 

  • Fernández, A. J., Ternero, M., & Fernández, F. (2004). Source characterisation of fine urban particles by multivariate analysis of trace metals speciation. Atmospheric Environment, 38, 873–886.

    Article  Google Scholar 

  • Frías, S., Conde, J. E., Rodriguez, B. J. J., Garcia, M. F., & Perez, T. P. J. P. (2003). Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents. Talanta, 59, 335–344.

    Article  Google Scholar 

  • García-Miragaya, J. (1984). Levels, chemical fractionation and solubility of lead in roadside soils of Caracas, Venezuela. Soil Science, 138, 147–152.

    Article  Google Scholar 

  • Garty, J., Romen, R., & Galun, M. (1985). Correlation between chlorophyll degradation and amount of some elements in the lichen Ramalinc diriaei (De Not.). Jatta Environmental and Experimental Botany, 25, 67–74.

    Article  CAS  Google Scholar 

  • Gilkes, R. J., & McKenzie, R. M. (1988). Geochemistry and minerology of manganese in soil. In R. D. Grahem (Ed.), Manganese in soil and plants (p. 157). London: Hannam.

    Google Scholar 

  • Gutiérrez-Galindo, E. A., Muñoz-Barbosa, A., Walter, L., Macías-Zamora, J. V., & Segovia-Zavala, J. A. (2007). Sources and factors influencing the spatial distribution of heavy metals in a coastal lagoon adjacent to the San Quintín volcanic field, Baja California, Mexico. Marine Pollution Bulletin, 54, 1962–1989.

    Article  Google Scholar 

  • Hanesch, M., Scholger, R., & Dekkers, M. J. (2001). The application of fuzzy means cluster analysis and non-linear mapping to a soil data set for detection of polluted sites. Physical Chemical Earth Sciences, 26, 885–891.

    Article  Google Scholar 

  • Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper and nickel in agricultural soil of the United States of America. Journal of Environmental Quality, 22, 335–348.

    Article  CAS  Google Scholar 

  • I.G.M.E. (1976). Mapa Geológico de España, E. 1:50 000. Murcia. Servicio de Publicaciones del Ministerio de Industria. Madrid. Memoria, 34pp y un mapa fuera de texto.

  • I.P.C.S. (1995). Environmental health criteria 165: Inorganic lead (p. 300). Genova: World Health Organization, International Programme on Chemical Safety.

  • I.P.C.S. (1998). Environmental health criteria 200: Copper (p. 360). Genova: World Health Organization, International Programme on Chemical Safety.

    Google Scholar 

  • Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spacial distribution of heavy metals in urban soils of Naples City (Italy). Environmental Polution, 124, 247–256.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soil and plants (2nd ed., p. 315). Boca Raton: CRC.

    Google Scholar 

  • Kartal, S., Aydın, Z., & Tokalıoglu, S. (2006). Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. Journal of Hazardous Materials, 132, 80–89.

    Article  CAS  Google Scholar 

  • Liu, W. X., Li, X. D., Shen, Z. G., Wang, D. C., Wai, O. W. H., & Li, Y. S. (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Peral River Estuary. Environmental Pollution, 121, 377–388.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21, 1613–1624.

    Article  CAS  Google Scholar 

  • Lucho-Constantino, C. A., Álvarez-Suárez, M., Beltrán-Hernández, R. I., Prieto-García, F., & Poggi-Varaldo, H. M. (2005). A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environment International, 31, 313–323.

    Article  CAS  Google Scholar 

  • Madrid, L., Díaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chesmosphere, 49, 1301–1308.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & y Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. The science of the total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • Mendiguchía, C., Moreno, C., Galindo, R. M. D., & Garcıía-Vargas, M. (2004). Using chemometric tools to assess anthropogenic effects in river water. A case study: Guadalquivir River (Spain). Analytica Chimica Acta, 515, 143–149.

    Article  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.

    Article  Google Scholar 

  • Möller, A., Muller, H. W., Abdullah, A., Abdelgawad, G., & Utermann, J. (2005). Urban soil pollution in Damascus, Syria: Concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma, 124, 63–71.

    Article  Google Scholar 

  • Monastra, V., Derry, L. A., Chadwick, O. A. (2004). Multiple sources of lead in soils from a Hawaiian chronosequence. Chemical Geology, 209, 215–231.

    Article  CAS  Google Scholar 

  • Norusis, M. J. (1993). SPSS for windows base system user’s guide release 6.0. SPSS Inc.

  • Paoletti, M. G., Lovane, E., & Cortese, M. (1988). Pedofauna bioindicators and heavy metals in five agroecosystens in north-east Italy. Revue Ecologie et Biologie du Sol, 25, 3–58.

    Google Scholar 

  • Peech, M. (1965). Hidrogen-ion activity. In C. A. Black (Ed.), Methods of soil analysis (2nd ed., pp. 914–916). Madison: American Society of Agronomy.

    Google Scholar 

  • Peris, M., Recatalá, L., Micó, C., Sánchez, R., & Sánchez, J. (2008). Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean region. Water Air Soil Pollution, 37, 192–25.

    Google Scholar 

  • Porta, J., López-Acevedo, M., & Roquero, C. (1999). Edafología para la agricultura y el medio ambiente (2 edición). Ediciones Mundi-Prensa.

  • Risser, J. A., & Baker, D. E. (1990). Testing soils for toxic metals. In R. L. Westerman (Ed.), Soil testing and plant analysis (3rd ed., pp. 275–298). Soil Sci. Soc. Amer. Spec. Publ. 3, Madison, Wi.p.

  • Rodríguez, J. A., López, M., & Grau, J. M. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental Pollution, 144, 1001–1012.

    Article  Google Scholar 

  • Romic, M., & Romic, D. (2002). Heavy metals distribution in agricultural top soils in urban area. Environmental Geology, 43, 795–805.

    Google Scholar 

  • Ruiz-Cortes, E., Reinoso, R., Diaz-Barrientos, E., & Madrid, L. (2005). Concentrations of potentially toxic metals in urban soils of Seville: Relationship with different land uses. Environmental Geochemistry and Health, 27, 465–474.

    Article  CAS  Google Scholar 

  • Sánchez-Camazano, M., Sánchez-Martín, M. J., & Lorenzo, L. F. (1998). Significance of soil properties for content and distribution of cadmium and lead in natural calcareous soils. The Science of the Total Environment, 218, 217–226.

    Article  Google Scholar 

  • Sangui, R., & Sasi, K. S. (2001). Pesticides and heavy metals in agricultural soil of Kampur, India. Environmental Contaminants Toxicology, 67, 446–454.

    Article  Google Scholar 

  • Singh, B. R. (1994). Trace element availability to plants in agricultural soils, with special emphasis on fertilizer inputs. NRC Canada, 2(2), 133–146.

    CAS  Google Scholar 

  • Smith, L. A., Means, J. L., Chen, A., Alleman, B., Chapman, C. C., Tixier, J. S., et al. (1995). Remedial options for metals-contaminated sites. Boca Raton: Lewis.

    Google Scholar 

  • Soil Survey Staff (2004). Soil survey laboratory methods manual. Version No. 4.0. USDA NRCS. Soil Survey Investigations Report No. 42. U.S. Govt. Print. Office, Washington, DC.

  • Tariq, S. R., Shah, M. H., & Shaheen, N. (2006). Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: A case study from Peshawar, Pakistan. Journal of Environmental Management, 79, 20–29.

    Article  CAS  Google Scholar 

  • Temmerman (1984). Determination of normal levels and upper limit values of trace element in soil. Verleg Chemie Gmbh, D-6940.

  • Tokahoglu, S., & Kartal, S. (2002). Evaluation of the results of metal analyses for lake sediment samples: A multivariate statistical approach. Chemia Analityczna (Warsaw), 47, 627–638.

    Google Scholar 

  • Urbano, P. (2001). Tratado de Fitotecnia General (895 pp.). Madrid: Ed. Mundi Prensa.

    Google Scholar 

  • Valerie, M., Derrya, L.A., & Chadwickb, O.A. (2004). Multiple sources of lead in soils from a Hawaiian chronosequence. Chemical Geology, 209, 215–231.

    Article  Google Scholar 

  • Vidal, J. (2002). Evaluación de los principales procesos de degradación en Fluvisoles calcáricos de la Huerta de Murcia. Tesis Doctoral, Universidad de Murcia.

  • Ward, N. L. (1989). Multielement contamination of British motorway environments. In J. P. Vernet (Ed.), Heavy metals in the environment, international conference (Vol. II). Genova: CEP Consultants Edinburgh.

    Google Scholar 

  • Wei, L., Tieyu, W., Yonglong, L., John, P. G., Yajuan, S., Yuanming, Z., et al. (2007). Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatistical analyses of metals in soils. Environmental Pollution, 146, 567–576.

    Article  Google Scholar 

  • Xue-Song, W., Yong, Q., & Yong-Kang, C. (2006). Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environmental Geology, 50, 1061–1066.

    Article  Google Scholar 

  • Yaalon, D. (1997). Soils in the Mediterranean region: What makes them different? Catena, 28, 157–169.

    Article  CAS  Google Scholar 

  • Yongming, H. T., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.

    Article  Google Scholar 

  • Zhang, C., Wang, L., Li, G., Don, S., Yang, J., & Wang, X. (2002). Grain size effect on multi element concentrations in sediments from the intertidal flats of Bohai Bay, China. Applied Geochemistry, 17, 59–68.

    Article  Google Scholar 

  • Zhang, H., Ma, D., Xie, Q., & Chen, X. (1990). An approach to studying heavy metal pollution caused by modern city development in Nanjung, China. Environmental Geology, 38(3), 223–228.

    Article  Google Scholar 

  • Zhou, J., Ma, D., Pan, J., Nie, W., & Wu, K. (2008). Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: A case study in Yangzhong, China. Environmental Geology, 54, 373–380.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Acosta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta, J.A., Faz, A. & Martinez-Martinez, S. Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environ Monit Assess 169, 519–530 (2010). https://doi.org/10.1007/s10661-009-1194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1194-0

Keywords

Navigation