Skip to main content
Log in

Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss–Koutine aquifer, southeastern Tunisia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Zeuss–Koutine aquifer, located in southeastern Tunisia, has been used intensively as a primary source to meet the growing needs of the various sectors. Detailed knowledge of the geochemical evolution of groundwater and water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To this end, a hydrochemical and statistical investigation was conducted. Groundwater samples have been collected from 13 wells from 1995 to 2005; to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Results demonstrate that among the cations, only the mean concentrations of Na +  exceed guideline values set by the World Health Organization (WHO). Regarding the analyzed anions, the concentration of SO\(_{4}^{2-}\) and Cl −  are above the WHO allowable concentrations. Total dissolved solids in most groundwater samples are greater than 1,000 mg l − 1, the limit set by the WHO, indicating slightly saline or moderately saline water. In general, a significant increase in the degree of water mineralization was observed in the direction of southwest to northeast following the regional flow direction. Calculated saturation indices show that all water samples were oversaturated with respect to aragonite, calcite, and dolomite, and undersaturated with respect to anhydrite, gypsum, and halite. Based on hydrochemical facies, two types of water predominate in the study area. The first is Ca–Na–SO4–Cl in type and located in the southwest which corresponds to the recharge part of the aquifer. The second type is Na–Ca–Cl–SO4 and located in the east, which corresponds to the discharge part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikary, P., Chandrasekharan, H., Chakraborty, D., Kumar, B., & Yadav, B. R. (2009). Statistical approaches for hydrogeochemical characterization of groundwater in West Delhi, India. Environmental Monitoring and Assessment, 154, 41–52.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed., p. 321). Rotterdam: Balkema.

    Google Scholar 

  • Cidu, R., Biddau, R., & Fanfani, L. (2009). Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). Journal of Geochemical Exploration, 100, 125–132.

    Article  CAS  Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydro-geochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353, 294–313.

    CAS  Google Scholar 

  • CVRM (2000). Programa ANDAD. Manual do utilizador. Lisboa: CVRM-Centro de Geosistemas, Instituto Superior Técnico.

  • Das, M., Kumar, A., Mohapatra, M., & Muduli, S. D. (in press). Evaluation of drinking quality of groundwater through multivariate techniques in urban area. Environmental Monitoring and Assessment. doi:10.1007/s10661-009-0991-9.

  • Davis, J. C. (1986). Statistics and data analysis in geology (p. 224). New York: Wiley.

    Google Scholar 

  • De Andrade, A. E., Araujo, H., Palacio, Q., Souza, I. H., Alipio de Oliveira, R., & Guerreiro, L. M. J. (2008). Land use effects in groundwater composition of an alluvial aquifer (Trussu River, Brazil) by multivariate techniques. Environmental Research, 106, 170–177.

    Article  Google Scholar 

  • Desbarats, A. J. (2009). On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin Impact Structure, Manitoba. Applied Geochemistry, 24, 915–927. doi:10.1016/j.apgeochem.2009.02.016.

    Article  CAS  Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry fundamentals and applications to contamination (p. 220). Washington: CRC/Lewis.

    Google Scholar 

  • DGRE (Direction générale des ressources en eaux) (2005). Annuaires piézométriques en Tunisie. 150 p.

  • Dixon, W., & Chiswell, B. (1992). The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 130, 299–338.

    Article  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., & Greenberg, A. E. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • El Yaouti, F., El Mandour, A., Khattach, D., Benavente, J., & Kaufmann, O. (2009). Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Applied Geochemistry, 24, 16–31.

    Article  Google Scholar 

  • Feng, Q., & Han, B. (2002). Hydrogeochemical simulation of water–rock interaction under water flood recovery in Renqiu Oilfield, Hebei Province, China. Chinese Journal of Geochemistry, 21, 156–162.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (1994). Applied hydrogeology (3rd ed., p. 310). New York: Macmillan College Publication.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gaubbi, E. (1988). Evolution de la piézométrie et de la géochimie de la nappe de Zeuss–Koutine. Master thesis (p. 63). Tunis, Tunisia: University El Manar.

  • Hidalgo, M. C., & Cruz-Sanjulian, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16, 745–758.

    Article  CAS  Google Scholar 

  • Hounslow, A. W. (1995). Water quality data: Analysis and interpretation (p. 395). Washington: CRC/Lewis.

    Google Scholar 

  • Jalali, M. (2005). Major ion chemistry in the Bahar area, Hamadan, western Iran. Environmental Geology, 47, 763–772.

    Article  CAS  Google Scholar 

  • Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341–351.

    Article  CAS  Google Scholar 

  • Magaritz, M., Nadler, A., Koyumdjisky, H., & Dan, N. (1981). The use of Na/Cl ratio to trace solute sources in a semiarid zone. Water Resource Research, 17, 602–608.

    Article  CAS  Google Scholar 

  • Medina-Gomez, J., & Herrera-Silveira, A. (2003). Estuarine spatial characterization of water quality in a karstic coastal lagoon without anthropogenic disturbance: A multivariate approach. Coastal and Shelf Science, 58, 455–465.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surfıcial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  CAS  Google Scholar 

  • Morhange, C., & Pirazzoli, P. A. (2005). Mid-Holocene emergence of Southern Tunisian coasts. Marine Geology, 220, 205–213.

    Article  Google Scholar 

  • OSS (2005). Etude hydrogéologique du système aquifère de la Djeffara tuniso-libyenne. Observatoire du Sahara et du Sahel. Rapport de synthèse, 209 p.

  • Ouessar, M., Sghaier, M., Mahdhi, N., AbdellI, F., DE Graaff, J., Chaieb, H., et al. (2004). An integrated approach for impact assessment of water harvesting techniques in dry areas: The case of Oued Oum Zessar watershed (Tunisia). Environmental Monitoring and Assessment, 99, 127–140.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2): A computer program for speciation, batch reaction, one dimensional transport, and inverse geochemical calculations (pp. 99–4259). U.S. Geological Survey Water-Resources Investigations Report.

  • Rodier, J. (1996). L’Analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer (p. 1384). Ed dunod Paris.

  • Romagny, B., Guillaume, H., Ben Ouezdou, H., & Palluault, S. (2004). Ressources en eau, usages et concurrences dans la Jeffara tunisienne. Documents de recherche du LPED, série Usages, appropriation, gestion des écosystèmes, n° 1, UMR 151 IRD—Université de Provence, 38 p.

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern cape, South Africa. Journal of Hydrology, 139, 27–48.

    Article  CAS  Google Scholar 

  • Spears, D. A. (1986). Mineralogical control of the chemical evolution of groundwater. In S. T. Trudgill (Ed.), Solute processes (pp. 512). Chichester: Wiley.

  • Subyani, A. M. (2005). Hydrochemical identification and salinity problem of ground-water in Wadi Yalamlam basin, Western Saudi Arabia. Journal of Arid Environments, 60, 53–66.

    Article  Google Scholar 

  • Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23, 2198–2213.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2004). Guidelines for drinking water quality, vol. 1 recommendations (3rd). Geneva: WHO.

    Google Scholar 

  • Yahyaoui, H. (2004). Nappes profondes de la Jeffara de Médenine caractéristiques et evolution. Direction générale des ressources en eau. Tunis. Rapp. Int. 15 p.

  • Yidana, S. M., Ophori, D., & Banoeng-Yakubob, B. (2008). A multivariate statistical analysis of surface water chemistry data—the Ankobra Basin, Ghana. Journal of Environmental Management, 86, 80–87.

    Article  CAS  Google Scholar 

  • Zhang, Y., Guo, F., Meng, W., & Wang, X. -Q. (2009). Water quality assessment and source identification of Daliao river basin using multivariate statistical methods. Environmental Monitoring and Assessment, 152, 105–121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadoua Hamzaoui-Azaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamzaoui-Azaza, F., Ketata, M., Bouhlila, R. et al. Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss–Koutine aquifer, southeastern Tunisia. Environ Monit Assess 174, 283–298 (2011). https://doi.org/10.1007/s10661-010-1457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1457-9

Keywords

Navigation