Skip to main content

Advertisement

Log in

Associations of cadmium, zinc, and lead in soils from a lead and zinc mining area as studied by single and sequential extractions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An exploratory study of the area surrounding a historical Pb–Zn mining and smelting area in Zawar, India, detected significant contamination of the terrestrial environment by heavy metals. Soils (n = 87) were analyzed for pH, EC, total organic matter (TOM), Pb, Zn, Mn, and Cd levels. The statistical analysis indicated that the frequency distribution of the analyzed parameters for these soils was not normal. The median concentrations of metals in surface soils were: Pb 420.21 μ g/g, Zn 870.25 μ g/g, Mn 696.70 μ g/g, and Cd 2.09 μ g/g. Zn concentrations were significantly correlated with Cd (r = 0.867), indicating that levels of Cd are dependent on Zn. However, pH, electrical conductivity and total organic matter were not correlated significantly with Cd, Pb, Zn, and Mn. To assess the potential mobility of Cd, Pb, and Zn in soils, single (EDTA) as well as sequential extraction scheme (modified BCR) were applied to representative (n = 23) soil samples. The amount of Cd, Pb, and Zn extracted by EDTA and their total concentrations showed linear positive correlation, which are statistically significant (r values for Cd, Pb, and Zn being 0.901, 0.971, and 0.795, respectively, and P values being <0.001). The correlation coefficients indicate a strong relation between EDTA-extractable metal and total metal. These results appear to justify the use of ‘total’ metal contents as a useful preliminary indicator of areas where the risks of metal excess or deficiency are high. The EDTA extractability was maximum for Cd followed by Pb and Zn in soils from all the locations. As indicated by single extraction, the apparent mobility and potential bioavailability of metals in soils followed the order: Cd ≥ Pb > > Zn. Soil samples were sequentially extracted (modified BCR) so that solid pools of Cd, Zn, and Pb could be partitioned into four operationally defined fractions viz. acid-soluble, reducible, oxidizable, and residual. Cadmium was present appreciably (39.41%) in the acid-soluble fraction and zinc was predominantly associated (32.42%) with residual fraction. Pb (66.86%) and Zn (30.44%) were present mainly in the reducible fraction. Assuming that the mobility and bioavailability are related to solubility of geochemical forms of metals and decrease in the order of extraction, the apparent mobility and potential metal bioavailability for these contaminated soil samples is Cd > Zn > Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Saheb, I., Schwab, A. P., Banks, M. K., & Hetrick, B. A. (1994). Chemical characterisation of heavy metal contaminated soil in southeast Kansas. Water, Air & Soil Pollution, 78, 73–82.

    Article  CAS  Google Scholar 

  • Agemian, H., & Chau, A. S. Y. (1975). An atomic absorption method for the determination of 20 elements in lake sediments after acid digestion. Analytica Chimica Acta, 80, 61–66.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soils. New York: Blackie, Wiley.

    Google Scholar 

  • Andersen, M. K., Raulund-Rasmussen, K., Hansen, H. C. B., & Strobel, B. W. (2002). Distribution and fractionation of heavy metals in pairs of arable and afforested soils in Denmark. European Journal of Soil Science, 53, 491–502.

    Article  CAS  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.

    Article  CAS  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2010). Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings. Chemosphere, 78, 1393–1402.

    Article  CAS  Google Scholar 

  • APHA (1995). Standard method for the examination of water and wastewater (19th ed.). Washington DC.

  • Boon, D. Y., & Soltanpour, P. N. (1991). Estimating total Pb, Cd and Zn in contaminated soils from NH4HCO3-DTPA-extractable levels. Communication in Soil Science Plant Analysis, 22, 369–378.

    Article  CAS  Google Scholar 

  • Borggaard, O. K. (1976). The use of EDTA in soil analysis. Acta Agriculturae Scandinavica, 26, 144–150.

    Article  CAS  Google Scholar 

  • Borggaard, O. K. (1982). Selective extraction of amorphous iron oxides by EDTA from selected silicates and mixtures of amorphous and crystalline iron oxides. Clay Minerals, 17, 365–368.

    Article  CAS  Google Scholar 

  • Borggaard, O. K. (1992). Dissolution of poorly crystalline iron oxides in soils by EDTA and oxalate. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 155, 431–436.

    Article  CAS  Google Scholar 

  • Cavallaro, N., & McBride, M. B. (1978). Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Journal of Soil Science Society of America, 42, 550–556.

    Article  CAS  Google Scholar 

  • Chao, T. T. (1984). Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 20, 101–135.

    Article  CAS  Google Scholar 

  • Charlesworth, S. M., & Lees, J. A. (1999). Particulate associated heavy metals in the urban environment: Their transport from source to deposit, Coventry, U.K. Chemosphere, 39(5), 833–848.

    Article  CAS  Google Scholar 

  • Chlopecka, A., Bacon, J. R., Wilson, M. J., & Kay, J. (1996). Forms of cadmium, lead and zinc in contaminated soils from southwest Poland. Journal of Environmental Quality, 25, 69–79.

    Article  CAS  Google Scholar 

  • Clayton, P. M., & Tiller, K. G., (1979). A chemical method for the determination of heavy metal content of soils in environmental studies. Technical Paper No. 41, CSIRO Australia, Division of Soils.

  • Clevenger, T. E. (1990). Use of sequential extraction to evaluate the heavy metals in mining wastes. Water, Air & Soil Pollution, 50, 241–254.

    Article  CAS  Google Scholar 

  • Cline, S. R., & Reed, B. E. (1995). Lead removal from soils via bench-scale soil washing techniques. Journal of Environmental Engineering, 121(10), 700–705.

    Article  CAS  Google Scholar 

  • Corsi, A. C., & Landim, P. M. B. (2002). Fluvial transport of lead, zinc and copper contents in polluted mining regions. Environmental Geology, 41, 833–841.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially contaminated land. Analytica Chimica Acta, 363, 45–55.

    Article  CAS  Google Scholar 

  • Davies, B. E. (1983). Heavy metal contamination from base metal mining and smelting: implications for man and his environment. In I. Thornton (Ed.), Applied environmental geochemistry (pp. 425–460). London: Academic.

  • Erskine, K. D. (1908). Rajputana Gazetteer IIA, “The Mewar Residency” (p. 53). Ajmer.

  • Fergusson, K. D., & Erickson, P. M. (1988). Pre-mine prediction of acid mine drainage. In W. Solmons, & U. Forstner (Eds.), Environmental management of solid waste: Dredged material and mine tailings (pp. 24–43). Berlin: Springer.

  • Garcia-Sanchez, A., Moyano, A., & Munez, C. (1999). Forms of cadmium, lead and zinc in polluted mining soils and uptake by plants (Soria Province, Spain). Communication in Soil Science & Plant Analysis, 30(9&10), 1385–1402.

    Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute, et al. (Eds.), Methods of soil analysis part i physical and minerological methods (2nd ed., pp. 383–409). Madison, Wisconsin, U.S.A.: Am. Soc. Agronomie.

  • Gibson, M. J., & Farmer, J. G. (1984). Chemical partitioning of trace metal contaminants in urban street dirt. Science of the Total Environment, 33, 49–57.

    Article  CAS  Google Scholar 

  • Gilmore, E. A., Evans, G. J., & Ho, M. D. (2001). Radiochemical assessment of the readsorption and redistribution of lead in the SM&T sequential extraction procedure. Analytica Chimica Acta, 439, 139–151.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Science of the Total Environment, 178, 11–20.

    Article  CAS  Google Scholar 

  • Hickey, M. G., & Kittrick, J. A. (1984). Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals. Journal of Environmental Quality, 13(3), 372–376.

    Article  CAS  Google Scholar 

  • Kot, A., & Namiesnik, J. (2000). The role of speciation in analytical chemistry. Trends in Analytical Chemistry, 19(2&3), 69–79.

    Google Scholar 

  • Krishnamurti, G. S. R., Huang, P. M., Kozak, L. M., Rostad, H. P. W., & Van Rees, K. C. J. (1997). Distribution of cadmium in selected soil profiles of Saskatchewan, Canada: Speciation and availability. Canadian Journal of Soil Science, 77, 613–619.

    CAS  Google Scholar 

  • Kuo, S., Heilman, P. E., & Baker, A. S. (1983). Distribution and forms of copper, zinc, cadmium, iron and manganese in soils near a copper smelter. Soil Science, 135(2), 101–109.

    Article  CAS  Google Scholar 

  • Lag, J., & Elsokkary, I. M. (1978). A comparison of chemical methods for estimating sadmium, lead and zinc availability to six food crops grown in industrially polluted soils of Odda, Norway. Acta Agriculturae Scandinavica, 28, 76–80.

    Article  CAS  Google Scholar 

  • Levy, D. B., Barberik, K. A., Siemer, E. G., & Sommers, L. E. (1992). Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado. Journal of Environmental Quality, 21, 185–195.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley.

    Google Scholar 

  • Lo, K. S. L., & Chen, Y. H. (1990). Extracting heavy metals from municipal and industrial sludges. Science of the Total Environment, 90, 99–116.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.

    Article  CAS  Google Scholar 

  • McBride, M. B. & Bouldin, D. R. (1984). Long term reactions of copper(II) in a contaminated calcareous soil. Journal of Soil Science Society of America, 48, 56–59.

    Article  CAS  Google Scholar 

  • McGrath, D. (1996). Application of single and sequential extraction procedures to polluted and unpolluted soils. Science of the Total Environment, 178, 37–44.

    Article  CAS  Google Scholar 

  • McGrath, S. P., & Cegarra, J. (1992). Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. Journal of Soil Science, 43, 313–321.

    Article  CAS  Google Scholar 

  • Mehra, A., Cordes, K. B., Chopra, S., & Fountain, D. (1999). Distribution and bioavailability of metals in soils in the vicinity of a copper works in Staffordshire, UK. Chemical Speciation & Bioavailability, 11, 57–66.

    Article  CAS  Google Scholar 

  • Mench, M. I., Didier, V. L., Loffler, V. L., Gomez, A., & Masson, P. (1994). A mimicked in situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. Journal of Environmental Quality, 23, 58–63.

    Article  CAS  Google Scholar 

  • Miller, W. P., & McFee, W. W. (1983). Distribution of cadmium, zinc, copper and lead in soils of Industrial Northwestern Indiana. Journal of Environmental Quality, 12(1), 29–33.

    Article  CAS  Google Scholar 

  • Mossop, K. F., & Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478, 111–118.

    Article  CAS  Google Scholar 

  • Okalebo, J. R., Kennth, W. G., & Woomer, P. L. (1993). Laboratory manual of soil and plant analysis: A working manual (p. 21). Muguga, Kenya: Soil Chemistry Laboratory, The Kenya Agriculture Research Institute, National Agriculture Research Centre.

  • Pardo, R., Barrado, E., Prez, L., & Vega, M. (1990). Determination and speciation of heavy metals in sediments of Pisuerga river. Water Research, 24(3), 373–379.

    Article  CAS  Google Scholar 

  • Pichtel, J., Vine, B., Kuula-Vaisanen, P., & Niskanen, P. (2001). Lead extraction from soils as affected by lead chemical and mineral forms. Environmental Engineering Science, 18, 91–98.

    Article  CAS  Google Scholar 

  • Pickering, W. F. (1986). Metal ion speciation—Soils and sediments (a review). Ore Geology Review, 1, 83–146.

    Article  CAS  Google Scholar 

  • Pueyo, M., Sastre, J., Hernandez, E., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2003). Prediction of trace element mobility in contaminated soils by sequential extraction. Journal of Environmental Quality, 32, 2054–2066.

    Article  CAS  Google Scholar 

  • Quevauviller, Ph. (1998). Operationally defined extraction procedures for soil and sediment analysis 1. Standardization. Trends in Analytical Chemistry, 17(5), 289–298.

    Article  CAS  Google Scholar 

  • Quevauviller, Ph. (2000). Method validation for speciation analysis. Trends in Analytical Chemistry, 19, 67–68.

    Article  CAS  Google Scholar 

  • Quevauviller, Ph. (2002). Operationally defined extraction procedure for soil and sediment analysis. Part 3: New CRMs for trace-element extractable contents. Trends in Analytical Chemistry, 21(11), 774–785.

    Article  CAS  Google Scholar 

  • Quevauviller, Ph., Rauret, G., Lopez-Sanchez, J. F., Rubio, R., Ure, A., & Muntau, H. (1997). Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Science of the Total Environment, 205, 223–234.

  • Raksasataya, M., Langdon, A. G., & Kim, N. D. (1996). Assessment of the extant of lead redistribution during sequential extraction by two different methods. Analytica Chimica Acta, 332, 1–14.

    Article  CAS  Google Scholar 

  • Ramos, L., Hernandez, M., & Gonzalez, M. J. (1994). Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana National Park. Journal of Environmental Quality, 23, 50–57.

    Article  CAS  Google Scholar 

  • Ramos, L., Gonzalez, M. J., & Hernandez, L. M. (1999). Sequential extraction of copper, lead, cadmium and zinc in sediments from Ebro River (Spain): Relationship with levels detected in Earthworms. Bulletin of Environmental Contamination & Toxicology, 62, 301–308.

    Google Scholar 

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soils and sediments. Talanta, 46, 449–455.

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Google Scholar 

  • Rauret, G., Lopez Sanchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., et al. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three year stability study of EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233.

  • Rieuwerts, J. S., Farago, M., Cikrt, M., & Bencko, V. (2000). Differences in lead bioavailability between a smelting and a mining area. Water, Air & Soil Pollution, 122, 203–229.

    Article  CAS  Google Scholar 

  • Rowell, D. L. (1994). Soil Science: Methods and applications (pp. 32–34). Essex, England: Longman.

  • Sahuquillo, A., Lopez-Sanchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. F., et al. (1999). Use of certified reference material for extractable trace metals to assess sources of uncertainity in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.

    Google Scholar 

  • Sanders, J. R., Adams, T. M., & Christensen, B. T. (1986). Extractability and bioavailability of Zn, Ni, Cd and Cu in three Danish soils sampled 5 years after application of sewage sludge. Journal of Science Food Agriculture, 37, 1155–1164.

    Article  CAS  Google Scholar 

  • Sanders, J. R., McGrath, S. P., & Adams, T. M. (1987). Zinc, copper and nickel concentrations in soil extracts and crops grown on four soil treated with metal loaded sewage sludges. Environmental Pollution, 44, 193–210.

    Article  CAS  Google Scholar 

  • Santillan-Medrano, J., & Jurinak, J. J. (1975). The chemistry of lead and cadmium in soil: Solid phase formation. Soil Science Society of America Proceedings, 39, 851–856.

    Article  CAS  Google Scholar 

  • Schramel, O., Michalke, B., & Kettrup, A. (2000). Study of copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Science of the Total Environment, 263, 11–22.

    Article  CAS  Google Scholar 

  • Skousen, J. G., Sexstone, A., & Ziemkiewicz, P. F. (2000). Acid mine drainage control and treatment. In Reclamation of drastically disturbed lands (pp. 131–168). Agronomy Monograph no. 9, ASA, CSSA, SSSA, Madison, WI 53711, USA

  • Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society of America Journal, 46, 260–264.

    Article  Google Scholar 

  • Stone, M., & Marsalek, J. (1996). Trace metal composition and speciation in street sediment: Saultste, Marie, Canada. Water, Air & Soil Pollution, 87, 149–169.

    Article  CAS  Google Scholar 

  • Sun, B., Zhao, F. J., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113, 111–120.

    Article  CAS  Google Scholar 

  • Sutherland, R. A., & Tack, F. M. G. (2002). Fractionation of Cu, Pb and zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research.

  • Sutherland, S. A., & Tack, F. M. G. (2000). Metal phase associations in soils from an urban watershed, Honolulu, Hawaii. Science of the Total Environment, 256, 103–113.

    Article  CAS  Google Scholar 

  • Sutherland, R. A., Tack, F. M. G., Tolosa, C. A., & Verloo, M. G. (2001). Metal extraction from road sediment using different strength reagents: Impact on anthropogenic contaminant signals. Environmental Monitoring & Assessment, 71, 221–242.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–850.

    Article  CAS  Google Scholar 

  • Thornton, I., Moorcroft, S., John, S., Watt, J., Strehlow, C. D., Barltrop, D., et al. (1980). Cadmium at Sipham—A unique example of geochemistry and health. In D. D. Hemphill (Ed.), Trace substances in environmental health (pp. 27–37). Columbia: University of Missouri.

  • Tokalioglu, S., & Kartal, S. (2005). Comparison of metal fractionation results obtained from single and sequential extractions. Bulletin of Environmental Contamination and Toxicology, 75, 180–188.

    Article  CAS  Google Scholar 

  • Torres, R., Blesa, M. A., & Matijevic, E. (1989). Interaction of metal hydrous oxides with chelating agents VIII. Dissolution of hematite. Journal Colloid and Interface Science, 131, 567–579.

    Article  CAS  Google Scholar 

  • Tsadilas, C. D., Matsi, T., Barbayiannis, N., & Dimoyiannis, D. (1995). Influence of sewage sludge application on soil properties and on the distribution and availability of heavy metal fractions. Communication in Soil Science & Plant Analysis, 26, 2603–2619.

    Article  CAS  Google Scholar 

  • Ullrich, S. M., Ramsey, M. H., & Rybicka, E. H. (1999). Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. Applied Geochemistry, 14, 187–196.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevauviller, Ph., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments: An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.

  • Viro, P. J. (1955). Use of ethylenediaminetetraacetic acid in soil analysis: I. experimental. Soil Science, 79, 459–465.

    Google Scholar 

  • Vodyanitskii, Y. N. (2010). Zinc forms in soils (review of publications). Eurasian Soil Science, 43(3), 269–277.

    Article  Google Scholar 

  • Wang, W. H., Wong, M. H., Leharne, S., & Fisher, B. (1998). Fractionation and biotoxicity of heavy metals in urban dusts collected from Hong Kong and London. Environmental Geochemistry and Health, 20, 185–198.

    Article  CAS  Google Scholar 

  • Xian, X. (1987). Chemical partioning of cadmium, zinc lead and copper in soils near smelter. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering, 22(6), 527–541.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anju, M., Banerjee, D.K. Associations of cadmium, zinc, and lead in soils from a lead and zinc mining area as studied by single and sequential extractions. Environ Monit Assess 176, 67–85 (2011). https://doi.org/10.1007/s10661-010-1567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1567-4

Keywords

Navigation