Skip to main content

Advertisement

Log in

Major ion chemistry and hydrochemical studies of groundwater of parts of Palar river basin, Tamil Nadu, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 50 groundwater samples were collected from parts of Palar river basin to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca, Mg, Na, K) and anions (HCO3, Cl, F,SO4, NO3, PO4,CO3, HCO3, and F) besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed using ArcGIS-9.2 to delineate spatial variation in physicochemical characteristics of groundwater samples. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 52% of the groundwater fall in the field of C2-S1, indicating water of medium salinity and low sodium, which can be used for irrigation in almost all types of soil with little danger of exchangeable sodium. Remaining 48% is falling under C1-SI, indicating water of low salinity and low sodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksoy, A. O., & Scheytt, T. (2007). Assessment of groundwater pollution around Torbali, Izmir, Turkey. Environmental Geology, 53, 19–25. doi:10.1007/s00254-006-0614-5.

    Article  CAS  Google Scholar 

  • Astel, A., Tsakouski, S., Barbieri, P., & Simeonov, V. (2007). Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Research, 41, 4566–4578.

    Article  CAS  Google Scholar 

  • Babiker, I. S., Mohamed, M. A. A., & Hiyama, T. (2007). Assessing groundwater quality using GIS. Water Resources Management, 21, 699–715. doi:10.1007/s11269-006-9059-6.

    Article  Google Scholar 

  • Baruah, M., Bhattacharyya, K. G., & Patgiri, A. D. (2008). Water quality of shallow groundwater of core city area of Guwahati. In Proceedings of sixteenth national symposium on environment, Haryana, India (pp. 101–106).

  • BIS (1998). Specifications for drinking water. New Delhi: Bureau of Indian Standards (BIS).

    Google Scholar 

  • Chang, H. J. (2005). Spatial and temporal variations of water quality in the Han River and its tributaries, Seoul, Korea, 1993–2002. Water, Air and Soil Pollution, 161, 267–284.

    Article  CAS  Google Scholar 

  • Chang, H. J. (2007). Comparative streamflow characteristics in urbanizing basins in the Portland Metropolitan Area. Hydrological Processes, 21, 211–222.

    Article  Google Scholar 

  • Claessens, L., Hopkinson, C., Rastetter, E., & Vallino, J. (2006). Effect of historical changes in land use and climate on the water budget of an urbanizing watershed. Water Resources Research, 42, W03426. doi:10.1029/2005WR004131.

    Article  Google Scholar 

  • Crosa, G., Froebrich, J., Nikolayenko, V., Stefani, F., Galli, P., & Calamari, D. (2006). Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Water Research, 40, 2237–2245.

    Article  CAS  Google Scholar 

  • Dar, I. A., Sankar, K., & Dar, M. A. (2010a). Spatial assessments of groundwater quality in Mamundiyar Basin, India. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1702-2.

    Google Scholar 

  • Dar, M. A., Sankar, K., & Dar, I. A. (2010b). Fluorine contamination in ground water: A major challenge. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1437-0.

    Google Scholar 

  • Dawe, P. (2006). A statistical evaluation of water quality trends in selected water bodies of Newfoundland and Labrador. Journal of Environmental Engineering and Science, 5(1), 59–73.

    Article  CAS  Google Scholar 

  • Dixit, S., Gupta, S. K., & Tiwari, S. (2005). Nutrient overloading of a freshwater lake in Bhopal, India. Electronic Green Journal, 21, 2–6.

    Google Scholar 

  • Golditch, S. S. (1938). A study in rock weathering. The Journal of Geology, 46, 17.

    Article  Google Scholar 

  • Hanrahan, G., Gledhill, M., House, W. A., & Worsfold, P. J. (2003). Evaluation of phosphorus concentrations in relation to annual and seasonal physico-chemical water quality parameters in a U.K. chalk stream. Water Research, 37(15), 3579–3589.

    Article  CAS  Google Scholar 

  • Jerry, A. N. (1986). Basic environmental technology (water supply, waste disposal and pollution control). New York: Wiley.

    Google Scholar 

  • Kannel, P. R., Lee, S., Kanel, S. R., Khan, S. P., & Lee, Y. S. (2007). Spatialtemporal variation and comparative assessment of water qualities of urban river system: A case study of the River Bagmati (Nepal). Environmental Monitoring and Assessment, 129(1–3), 433–459.

    Article  CAS  Google Scholar 

  • Karanth, K. R. (1987). Quality of ground water. In K. R. Karanth (Ed.), Ground water assessment development and management (pp. 217–275). New Delhi: Tata McGrawHill.

    Google Scholar 

  • Meybeck, M. (2002). Riverine quality at the Anthropocene: Propositions for global space and time analysis, illustrated by the Seine River. Aquatic Sciences, 64(4), 376–393.

    Article  Google Scholar 

  • Nelson, K. C., & Palmer, M. A. (2007). Stream temperature surges under urbanization and climate change: data, models, and responses. Journal of the American Water Resources Association, 43, 440–452.

    Article  Google Scholar 

  • Panday, S. P., Narayanaswamy, V. S., & Hasan, M. Z. (1979). Quality of well waters of Nagapur with regardto nitrates. Indian Journal of Environmental Health, 21, 35–46.

    Google Scholar 

  • Piper, A. M. (1994). A geographic procedure in the geochemical interpretation of water analysis. Transactions—American Geophysical Union (Vol. 25, pp. 914–928). Washington D.C.

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.

    Article  CAS  Google Scholar 

  • Sinha, A. K., Srivastava, K. P., & Sexena, J. (2000). Impact of urbanization on groundwater of Jaipur, Rajasthan. Earth Resources and Environmental Issue.

  • Stubblefield, A. P., Reuter, J. E., Dahlgren, R. A., & Goldman, C. R. (2007). Use of turbidometry to characterize suspended sediment and phosphorus fluxes in the Lake Tahoe Basin, California, USA. Hydrological Processes, 21, 281–291.

    Article  Google Scholar 

  • Subrahmanyam, K., & Yadaiah, P. (2001). Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India. Hydrogeology Journal, 9, 297–312. doi:10.1007/s100400000120.

    Article  CAS  Google Scholar 

  • Tijani, M. N. (1994). Hydrochemical assessment of groundwater in Moro area, Kwara State, Nigeria. Environmental Geology, 24, 194–202.

    Article  CAS  Google Scholar 

  • Wilcox, L. V. (1948). The quality of water for irrigation uses (40 pp.). U.S. Dept. Agri. Tech. Bull. 962, Washington, DC, USDA.

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. USD Circular No. 969. Washington DC.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithas Ahmad Dar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dar, M.A., Sankar, K. & Dar, I.A. Major ion chemistry and hydrochemical studies of groundwater of parts of Palar river basin, Tamil Nadu, India. Environ Monit Assess 176, 621–636 (2011). https://doi.org/10.1007/s10661-010-1608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1608-z

Keywords

Navigation