Skip to main content

Advertisement

Log in

Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Urban and industrial development has caused a major impact on environmental soil quality. This work assesses the extent and severity of contamination in a small urban area subjected to an industrial impact and identifies the major anthropogenic inputs. Twenty-six soil samples were collected from agricultural and urban sites, and concentrations of potentially toxic elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn), PAHs and PCBs, were determined. In spite of the low median concentrations observed, some sites represent a potential hazard for human health and ecosystems. Concentrations of contaminants were higher than those found in a nearby city, indicating that the study area is affected by the surrounding industry. The use of multivariate statistical analyses allowed for the identification of the main factors controlling the variability of potentially toxic elements and organic pollutants in the soils. The presence of Cr, Fe, Mn and Ni was associated with geogenic inputs, and Cu, Pb, Zn, As, PAHs and PCBs were associated with anthropogenic inputs. Industry and traffic were the most important anthropogenic sources. Soil characteristics were identified as important factors controlling the spatial variability of elements, both from recognised natural and anthropogenic origin. Differences between land uses were observed, which may be attributed to both management practices and proximity to sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batista, A. C., Ferreira da Silva, E. A., Azevedo, M. C. C., Sousa, A. J., & Cardoso Fonseca, E. (2002). Soil data analysis from central Portugal by Principal Component Analysis and geostatistical techniques. Geochemistry: Exploration, Environment, Analysis, 2(1), 15–25. doi:10.1144/1467-787302-002.

    Article  CAS  Google Scholar 

  • Biasioli, M., Grčman, H., Kralj, T., Madrid, F., Díaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: A comparison of three European cities. Journal of Environmental Quality, 36, 70–79. doi:10.2134/jeq2006.0254.

    Article  CAS  Google Scholar 

  • Cachada, A., Lopes, L. V., Hursthouse, A. S., Biasioli, M., Grčman, H., Otabbong, E., et al. (2009a). The variability of polychlorinated biphenyls levels in urban soils from five European cities. Environmental Pollution, 157(2), 511–518. doi:10.1016/j.envpol.2008.09.002.

    Article  CAS  Google Scholar 

  • Cachada, A., Rodrigues, S. M., Mieiro, C., Ferreira da Silva, E., Pereira, E., & Duarte, A. C. (2009b). Controlling factors and environmental implications of mercury contamination in urban and agricultural soils under a long term influence of a chlor-alkali plant in the North-West Portugal. Environmental Geology, 57, 91–98. doi:10.1007/s00254-008-1284-2.

    Article  CAS  Google Scholar 

  • Chaminé, H., Rocha, F., Gomes, C., & Moço, L. P. (2001). Overview based on clay mineralogy and organic metamorphism data of midlle Palaeozoic black shales from Albergaria-a-Velha-Coimbra region (Porto - Tomar shear zone, NW Portugal). Boletin Sociedad Española Mineralogia, 24-A, 53–54.

    Google Scholar 

  • Chaminé, H., Rocha, F., Moço, L. P., Fernandes, J. P., Flores, D., Gomes, C., et al. (2002). Middle and upper Palaeozoic basins from Estarreja - Coimbra - Tomar region (Porto-Tomar-Ferreira do Alentejo shear zone, W Portugal): A clay mineralogy, organic metamorphism, palynology and tectonostratigraphy review. In C. Gaillard, & P. Hantzperque (Eds.), 52 Strati’2002 - 3eme Congrès Français de Stratigraphie (pp. 68–69). Docum. Labor. Géol. Lyon, 156.

  • Chen, T., Liu, X., Zhu, M., Zhao, K., Wu, J., Xu, J., et al. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environmental Pollution, 151, 67–78. doi:10.1016/j.envpol.2007.03.004.

    Article  CAS  Google Scholar 

  • Costa, C., & Jesus-Rydin, C. (2001). Site investigation on heavy metals contaminated ground in Estarreja – Portugal. Engineering Geology, 60, 39–47. doi:10.1016/S0013-7952(00)00087-9.

    Article  Google Scholar 

  • Delgado, H., Rocha, F., & Gomes, C. (1992). Evolution of the Aveiro lagoon during the last 500 years based on clay mineralogy. Mineralogie et Petrologie Acta, XXXV-A, 105–110.

    Google Scholar 

  • Desaules, A., Ammann, S., Blum, F., Brandli, R. C., Bucheli, T. D., & Keller, A. (2008). PAH and PCB in soils of Switzerland: Status and critical review. Journal of Environmental Monitoring, 10, 1265–1277. doi:10.1039/b807206j.

    Article  CAS  Google Scholar 

  • EEA (European Environment Agency) (2006). Urban sprawl in Europe—The ignored challenge. EEA Report No. 10/2006, Denmark, Copenhagen.

  • Gallego, J. L. R., Ordóñez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environment International, 27, 589–596. doi:10.1016/S0160-4120(01)00115-5.

    Article  CAS  Google Scholar 

  • Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: Evidence for atmospheric contamination. Science of Total Environment, 312(1–3), 195–219. doi:10.1016/S0048-9697(03)00223-7.

    CAS  Google Scholar 

  • Ljung, K., Otabbong, E., & Selinus, O. (2006). Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environmental Geochemistry and Health, 28, 353–364. doi:10.1007/s10653-005-9031-z.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11, 121–127. doi:10.1016/0883-2927(95)00076-3.

    Article  Google Scholar 

  • Miraldo, C. (2007). Estudo da Contaminação do Aquífero Superior na Região de Estarreja. MCs Thesis, University of Coimbra, Portugal (in Portuguese).

  • Morillo, E., Romero, A. S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grcman, H., et al. (2007). Soil pollution by PAHs in urban soils: A comparison of three European cities. Journal of Environmental Monitoring, 9, 1001–1008. doi:10.1039/b705955h.

    Article  CAS  Google Scholar 

  • Morillo, E., Romero, A. S., Madrid, L., Villaverde, J., & Maqueda, C. (2008). Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water, Air, and Soil Pollution, 187, 41–51. doi:10.1007/s11270-007-9495-9.

    Article  CAS  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004a). Metal pollution of soils and vegetation in an area with petrochemical industry. Science of the Total Environment, 321, 59–69. doi:10.1016/j.scitotenv.2003.08.029.

    Article  CAS  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004b). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132, 1–11. doi:10.1016/j.envpol.2004.04.003.

    Article  CAS  Google Scholar 

  • Peltola, P., & Åström, M. (2003). Urban geochemistry: A multimedia and multielement survey of a small town in northern Europe. Environmental Geochemistry and Health, 25(4), 397–419. doi:10.1023/B:EGAH.0000004553.56489.0c.

    Article  CAS  Google Scholar 

  • Pereira, V. (1989). Contribuição para o conhecimento dos Cambissolos húmicos do Médio Vouga. Geociências. Revista da Universidade de Aveiro, 4(1), 75–86 (in Portuguese).

    Google Scholar 

  • Pouyat, R. V., Yesilonis, I. D., Szlavecz, K., Csuzdi, C., Hornung, E., Korsos, Z., et al.(2008). Response of forest soil properties to urbanization gradients in three metropolitan areas. Landscape Ecology, 23, 1187–1203. doi:10.1007/s10980-008-9288-6.

    Article  Google Scholar 

  • Reis, A. T., Rodrigues, S. M., Araujo, C., Coelho, J. P., Pereira, E., & Duarte, A. C. (2009). Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Science of Total Environment, 407, 2689–2700. doi:10.1016/j.scitotenv.2008.10.065.

    Article  CAS  Google Scholar 

  • Rocha, F. J. F. T. (1993). Argilas aplicadas a estudos litoestratigráficos e paleoambientais na bacia sedimentar de Aveiro. Ph.D. thesis, Universidade de Aveiro, Portugal.

  • Rodrigues, S., Urquhart, G., Hossak, I., Pereira, M. E., Duarte, A. C., Davidson, C., et al. (2009). The influence of anthropogenic and natural factors on urban soil quality variability: A comparison between Glasgow, U.K. and Aveiro, Portugal. Environmental Chemistry Letters, 7, 141–148. doi:10.1007/s10311-008-0149-y.

    Article  CAS  Google Scholar 

  • Salminen, R. (Chief-editor) (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Geological Survey of Finland. Electronic version: http://www.gtk.fi/publ/foregsatlas/index.php.

  • Trapido, M. (1999). Polycyclic aromatic hydrocarbons in Estonian soil: Contamination and profiles. Environmental Pollution, 105, 67–74. doi:10.1016/S0269-7491(98)00207-3.

    Article  CAS  Google Scholar 

  • Tume, P., Bech, J., Sepulveda, B., Tume, L., & Bech, J. (2008). Concentrations of heavy metals in urban soils of Talcahuano (Chile): A preliminary study. Environmental Monitoring and Assessment, 140(1–3), 91–98. doi:10.1007/s10661-007-9850-8.

    Article  CAS  Google Scholar 

  • Tyler, G. (2004). Vertical distribution of major, minor, and rare elements in a Haplic Podzol. Geoderma, 119(3–4), 277–290. doi:10.1016/j.geoderma.2003.08.005.

    Article  CAS  Google Scholar 

  • VROM (2000). Circular on target values and intervention values for soil remediation: BO/1999226863, Ministry of Housing, spatial planning and environment directorates—General for environment protection. Department of Soil Protection, Netherlands Government Gazette, No. 39. Electronic version: http://www2.minvrom.nl/Docs/internationaal/annexS_I2000.pdf.

  • Wang, G. D., Mielke, H. W., Quach, V., Gonzales, C., & Mang, Q. (2004). Determination of polycyclic aromatic hydrocarbons and trace metals in New Orleans soils and sediments. Soil and Sediment Contamination, 13(3), 313–327. doi:10.1080/10588330490445349.

    Article  Google Scholar 

  • Yesilonis, I. D., Pouyat, R. V., & Neerchal, N. K. (2008). Spatial distribution of metals in soils in Baltimore, Maryland: Role of native parent material, proximity to major roads, housing age and screening guidelines. Environmental Pollution, 156(3), 723–731. doi:10.1016/j.envpol.2008.06.010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabela Cachada.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cachada, A., Pereira, M.E., Ferreira da Silva, E. et al. Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact. Environ Monit Assess 184, 15–32 (2012). https://doi.org/10.1007/s10661-011-1943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1943-8

Keywords

Navigation