Skip to main content
Log in

Occurrence of pharmaceutical compounds in wastewater process streams in Dublin, Ireland

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this work is to establish baseline levels of pharmaceuticals in three wastewater treatment plant (WWTP) streams in the greater Dublin region to assess the removal efficiency of the selected WWTPs and to investigate the existence of any seasonal variability. Twenty compounds including several classes of antibiotics, acidic and basic pharmaceuticals, and prescribed medications were selected for investigation using a combination of membrane filtration, solid phase extraction (SPE) cleanup, and liquid chromatography–electrospray ionization tandem mass spectrometry. Fourteen of the selected compounds were found in the samples. Increased effluent concentrations, compared to influent concentrations, for a number of compounds (carbamazepine, clotrimazole, propranolol, nimesulide, furosemide, mefenamic acid, diclofenac, metoprolol, and gemfibrozil) were observed. The detected concentrations were generally below toxicity levels and based on current knowledge are unlikely to pose any threat to aquatic species. Mefenamic acid concentrations detected in both Leixlip and Swords effluents may potentially exert ecotoxicological effects with maximum risk quotients (i.e., ratio of predicted exposure concentration to predicted no effect concentration) of 4.04 and 1.33, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, M. (2008). Economies in drug usage in the Irish healthcare setting (pp. 1–34). Dublin: National Centre for Pharmacoeconomics. http://www.indi.ie/docs/878_economies_drug_usage_(2).pdf.

  • Batt, A. L., Kostich, M. S., & Lazorchak, J. M. (2008). Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Analytical Chemistry, 80, 5021–5030.

    CAS  Google Scholar 

  • Bendz, D., Paxeus, N. A., Ginn, T. R., & Logec, F. J. (2005). Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden. Journal of Hazardous Materials, 122, 195–204.

    CAS  Google Scholar 

  • Bibic, S., Horvat, A. J. M., Pavlovic, D. M., & Kastelan-Macan, M. (2007). Determination of pKa values of active pharmaceutical ingredients. TrAC. Trends in Analytical Chemistry, 26, 1043–1061.

    Google Scholar 

  • Bones, J., Thomas, K., Nesterenko, P. N., & Paull, B. (2006a). Dual gradient LC method for the determination of pharmaceutical residues in environmental samples using monolithic silica reversed phase column. International Journal of Environmental Analytical Chemistry, 86, 487–504.

    CAS  Google Scholar 

  • Bones, J., Thomas, K., Nesterenko, P. N., & Paull, B. (2006b). On-line preconcentration of pharmaceutical residues from large volume water samples using short reversed-phase monolithic cartridges coupled to LC-UV-ESI-MS. Talanta, 70, 1117–1128.

    CAS  Google Scholar 

  • Brown, J. N., Paxeus, N., Forlin, L., & Joakim Larsson, D. G. (2007). Variation in the bioconcentration of human pharmaceuticals from sewage effluents into fish blood plasma. Environmental Toxicology of Pharmaceuticals, 24, 267–274.

    CAS  Google Scholar 

  • Castiglioni, S., Bagnati, R., Fanelli, R., Pomati, F., Calamari D., & Zuccato, E. (2006). Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science and Technology, 40, 357–363.

    CAS  Google Scholar 

  • Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38, 947–954.

    CAS  Google Scholar 

  • Clara, M., Kruzinger, N., Strenn, B., Gans, O., & Kroiss, H. (2005). The solids retention time—A suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Research, 39, 97–106.

    CAS  Google Scholar 

  • Cleuvers, M. (2003). Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicology Letters, 142, 185–194.

    CAS  Google Scholar 

  • Crane, M., Watts, C., & Boucard, T. (2006). Chronic aquatic environmental risks from exposure to human pharmaceuticals. Science of the Total Environment, 367, 23–41.

    CAS  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107, 907–938.

    CAS  Google Scholar 

  • Fallavena, P. R. B., & Schapoval E. E. S. (1997). pKa Determination of nimesulide in methanol–water mixtures by potentiometric titrations. International Journal of Pharmaceuticals, 158, 109–112.

    CAS  Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159.

    CAS  Google Scholar 

  • Ferrari, B., Paxeus, N., Lo Giudice, R., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid and diclofenac. Ecotoxicology and Environmental Safety, 55, 359–370.

    CAS  Google Scholar 

  • Flaherty, C. M., & Dodson, S. I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61, 200–207.

    CAS  Google Scholar 

  • Forbes, B, Shah, A., Martin, G. P., & Lansley, A. B. (2003). The human bronchial epithelial cell line 16HBE14o—As a model system of the airways for studying drug transport. International Journal of Pharmaceuticals, 257, 161–167.

    CAS  Google Scholar 

  • Gracia-Lor, E., Sancho, J. V., & Hernandez, F. (2010). Simultaneous determination of acidic, neutral and basic pharmaceuticals in urban wastewater by ultra high-pressure liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1217, 622–632.

    CAS  Google Scholar 

  • Health Service Executive (2005). Statistical analysis of claims and payments. http://www.hse.ie/eng/Staff/PCRS/PCRS_Publications/Primary_Care_Reimbursement_Service_Financial_and_Statistical_Analysis_2005.pdf

  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicology Letters, 131, 5–17.

    CAS  Google Scholar 

  • Heberer, T., & Adam, M. (2004). Transport and attenuation of pharmaceutical residues during artificial groundwater replenishment. Environmental Chemistry, 1, 22–25.

    CAS  Google Scholar 

  • Hong, H. N., Kim, H. N., Park, K. S., Lee, S., & Gu, M. B. (2007). Analysis of the effects diclofenac has on Japanese medaka (Oryzias latipes) using real-time PCR. Chemosphere, 67, 2115–2121.

    CAS  Google Scholar 

  • Hulscher, Th. E. M., & Cornelissen, G. (1996). Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants—A review. Chemosphere, 32, 609–626.

    Google Scholar 

  • Irish Medicines Board (IMB) (2010). www.imb.ie. Accessed on 02 Sep 2010.

  • Isidori, M., Nardelli, A., Parrella, A., Pascarella L., & Previtera, L. (2006). A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: Furosemide and its photoproduct. Chemosphere, 63, 785–793.

    CAS  Google Scholar 

  • Jones-Lepp, T. L., & Stevens, R. (2007). Pharmaceuticals and personal care products in biosolids/sewage sludge: The interface between analytical chemistry and regulation. Analytical and Bioanalytical Chemistry, 387, 1173–1183.

    CAS  Google Scholar 

  • Jones, O. A. H., Voulvoulis, N. & Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 36, 5013–5022.

    CAS  Google Scholar 

  • Kahle, M., Buerge I. J., Hauser, A., Mller, M. D., & Poiger, T. (2008). Azole fungicides: Occurrence and fate in wastewater and surface waters. Environmental Science and Technology, 42, 7193–7200.

    CAS  Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2008). Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography–electrospray tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 391, 1293–1308.

    CAS  Google Scholar 

  • Khetan, S. K., & Collins, T. J. (2007). Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chemical Reviews, 107, 2319–2364.

    CAS  Google Scholar 

  • Kimura, K., Hara, H., & Watanabe, Y. (2007). Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors. Environmental Science and Technology, 41, 3708–3714.

    CAS  Google Scholar 

  • Kobayashi, D., Nozawa, T., Imai, K., Nezu, J.-I., Tsuji, A., & Tamai, I. (2003). Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. Journal of Pharmacology and Experimental Therapeutics, 306, 703–708.

    CAS  Google Scholar 

  • Kubota, T., Fujisaki, K., Itoh, Y., Yano, T., Sendo, T., & Oishi, R. (2004). Apoptotic injury in cultured human hepatocytes induced by HMG-CoA reductase inhibitors. Biochemical Pharmacology, 67, 2175–2186.

    CAS  Google Scholar 

  • Kummerer, K. (Ed.) (2004). Pharmaceuticals in the environment—sources, fate, effects and risks (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Lacey, C., McMahon, G., Bones, J., Barron, L., Morrissey, A., & Tobin, J. (2008). An LC-MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples. Talanta, 75, 1089–1097.

    CAS  Google Scholar 

  • Maggs, J. L., Pirmohamed, M., Kitteringham, N. R., & Park, B. K. (1997). Characteristics of the metabolites of carbamazepine in patient urine by liquid chromatography/mass spectrometry. Drug Metabolites and Disposal, 25, 275–280.

    CAS  Google Scholar 

  • Miao, X.-S., & Metcalfe, C. D. (2003). Determination of cholesterol-lowering statin drugs in aqueous samples using liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 998, 133–141.

    CAS  Google Scholar 

  • Miao, X.-S., Yang, J.-J., & Metcalfe, C. D. (2005). Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environmental Science and Technology, 39, 7469–7475.

    CAS  Google Scholar 

  • Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387, 1225–1234.

    CAS  Google Scholar 

  • Oaks, J., Gilbert, M., Virani, M., Watson, R., Meteyer, C., Rideout, B., et al. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature, 427, 630–633.

    CAS  Google Scholar 

  • OSPAR Commission (2005). Open access document on clotrimazole. Publication no. 2005/199.

  • Roberts P. H., & Thomas, K. V. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of the Total Environment, 356, 143–153.

    CAS  Google Scholar 

  • Ruell, J. A., Tsinman, O., & Avdeef, A. (2004). Acid–base cosolvent method for determining aqueous permeability of amiodarone, itraconazole, tamoxifen, terfenadine and other very insoluble molecules. Chemical and Pharmaceutical Bulletin, 52, 561–565.

    CAS  Google Scholar 

  • Santos, J. L., Aparicio, I., & Alonso, E. (2007). Occurrence risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environment International, 33, 596–601.

    CAS  Google Scholar 

  • Santos, J. L., Aparicio, I., Callejón, M., & Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials, 164, 1509–1516.

    CAS  Google Scholar 

  • Scheytt, T., Mersmann, P., Lindstadt, R., & Herberer, T. (2005a). Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere, 60, 245–253.

    CAS  Google Scholar 

  • Scheytt, T., Mersmann, P., Lindstadt, R., & Herberer, T. (2005b). 1-Octanol/water partition coefficients of 5 pharmaceuticals from human medicinal care: Carbamazepine, clofibric acid, diclofenac, ibuprofen and propyphenazone. Water Air Soil Pollution, 165, 3–11.

    CAS  Google Scholar 

  • Spongberg, A. L., & Witter, J. D. (2008). Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Science of the Total Environment, 397, 148–157.

    CAS  Google Scholar 

  • Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. W., & Baumann, W. (1999). Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 225, 135–141.

    Google Scholar 

  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32, 3245–3260.

    CAS  Google Scholar 

  • Ternes, T. A., Herrmann, N., Bonerz, M., Knacker, T., Siegrist, H., & Joss, A. (2004). A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Research, 38, 4075–4084.

    CAS  Google Scholar 

  • Triebskorn, R., Casper, H., Scheil, V., & Schwaiger, J. (2007). Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchusmykiss) and common carp (Cyprinus carpio). Analytical and Bioanalytical Chemistry, 387, 1405–1416.

    CAS  Google Scholar 

  • Tubic, B., Ivkovic, B., Zecevic, M., & Vladimirov, S. (2007). Simultaneous determination of nimesulide and its impurities in pharmaceutical formulations by reversed-phase high-performance liquid chromatography. Acta Chimica Slovenica, 54, 583–590.

    CAS  Google Scholar 

  • Urase, T., & Kikuta, T. (2005). Separate estimation of adsorption and degradation pf pharmaceutical substances and estrogens in the activated sludge process. Water Research, 39, 1289–1300.

    CAS  Google Scholar 

  • Vieno, N. M., Tuhkanen, T., & Kronberg, L. (2005). Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environmental Science and Technology, 39, 8220–8226.

    CAS  Google Scholar 

  • Wulff, H., Gutman, G. A., Cahalan, M. D., & Chandy, K. G. (2001). Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1. Journal of Biological Chemistry, 276, 32040–32045.

    CAS  Google Scholar 

  • Yamini, Y., Reimann, C. T., Vatanara, A., & Jonsson, J. A. (2006). Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollo fibre supported liquid membrane containing anionic carrier. Journal of Chromatography A, 1124, 57–67.

    CAS  Google Scholar 

  • Zhang, Z., Hibberd, A., & Zhou, J. L. (2008). Analysis of emerging contaminants in sewage effluent and riverwater: Comparison between spot and passive sampling. Analytica Chimica Acta, 607, 37–44.

    CAS  Google Scholar 

  • Zhou, J. L., Zhang, Z. L., Banks E., Grover, D., & Jiang, J. Q. (2009). Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water. Journal of Hazardous Materials, 166, 655–661.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Tobin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacey, C., Basha, S., Morrissey, A. et al. Occurrence of pharmaceutical compounds in wastewater process streams in Dublin, Ireland. Environ Monit Assess 184, 1049–1062 (2012). https://doi.org/10.1007/s10661-011-2020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2020-z

Keywords

Navigation