Skip to main content

Advertisement

Log in

Hydrogeochemical processes controlling the high fluoride concentration in groundwater: a case study at the Boden block area, Orissa, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present investigation reports the assessment of hydrochemical/geochemical processes controlling the concentration of fluoride in groundwater of a village in India (Boden block, Orissa). Boden block is one of the severely affected fluoride-contaminated areas in the state of Orissa (India). The sampling and subsequent analysis of water samples of the study area was carried out following standard prescribed methods. The results of the analysis indicate that 36.60% groundwater F concentration exceeds the limit prescribed by the World Health Organization for drinking water. The rock interaction with groundwater containing high concentration of HCO 3 and Na+ at a higher pH value of the medium could be one of the important reasons for the release of F from the aquatic matrix into groundwater. Geochemical classification of groundwater based on Chadha rectangular diagram shows that most of the groundwater samples having fluoride concentration more than 1.5 mg L−1 belongs to the Na-K-HCO3 type. The saturation index values evaluated for the groundwater of the study area indicated that it is oversaturated with respect to calcite, whereas the same is undersaturated with respect to fluorite content. The deficiency of calcium ion concentration in the groundwater from calcite precipitation favors fluorite dissolution leading to excess of fluoride concentration. The risk index was calculated as a function of fluoride level in drinking water and morbidity of fluorosis categorizes high risk for villages of Amera and Karlakote panchayat of Boden block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amini, M., Muller, K., Abbaspour, K. C., Rosenberg, T., Afyuni, M., Moller, K. N., et al. (2008). Statistical modeling of global geogenic fluoride contamination in groundwaters. Environmental Science and Technology, 42, 3662–3668.

    Article  CAS  Google Scholar 

  • Apambire, W. B., Boyle, D. R., & Michel, F. A. (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Env Geol, 33, 13–24.

    Article  CAS  Google Scholar 

  • APHA American Public Health Association (1995) Standard methods for the examination of water and waste water, 19th edn. American Public Health Association, Washington DC.

  • Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking waters: a review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36, 433–487.

    Article  CAS  Google Scholar 

  • Bo, Z., Mei, H., Yongsheng, Z., Xueyu, L., Xuelin, Z., & Jun, D. (2003). Distribution and risk assessment of fluoride in drinking water in the west plain region of Jilin province. China. Env. Geochem. Health, 25, 421–431.

    Article  CAS  Google Scholar 

  • Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrology J, 7, 431–439.

    Google Scholar 

  • Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S. Y., Kwon, J. S., et al. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385, 272–283.

    Article  CAS  Google Scholar 

  • Chae, G. T., Yun, S. T., Kim, K., & Mayer, B. (2006). Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pochon Spa Area, South Korea: water–rock interaction and hydrologic mixing. Journal of Hydrology, 321, 326–343.

    Article  CAS  Google Scholar 

  • Carrillo-Rivera, J. J., Cardona, A., & Edmunds, W. M. (2002). Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted ground water: San Luis Potosia basin. Mexico. J. Hydrol, 261, 24–47.

    CAS  Google Scholar 

  • Davraz, A., Sener, E., & Sener, S. (2008). Temporal variations of fluoride concentration in Isparta public water system and health impact assessment (SW-Turkey). Environmental Geology, 56, 159–170.

    Article  CAS  Google Scholar 

  • Dhiman, S. D., & Keshari, A. K. (2006). Hydrogeochemical evaluation of high-fluoride ground waters: a case study from Mehsana District, Gujarat, India. Hydrological Sciences Journal, 51, 1149–1162.

    Article  CAS  Google Scholar 

  • Díaz-Barrigo, F., Navarro-Quezada, A., Grijalva, M. I., Grimaldo, M., Loyola-Rodríguez, J. P., & Ortiz, M. D. (1997). Endemic fluorosis in Mexico. Fluoride, 30, 233–239.

    Google Scholar 

  • Duffer, C. N., & Becker, E. (1964). Public water supplies for the 100 largest cities in the United States. US. Geog Sur Water Supply, 1812, 364.

    Google Scholar 

  • Edmunds, M., & Smedley, P. (2005). Chapter 12: fluoride in natural waters. In O. Selnius, B. Alloway, J. A. Centeno, R. B. Finkleman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 301–330). Amsterdam: Academic Press.

    Google Scholar 

  • Ellis, A. J., & Mohan, W. A. J. (1964). Natural hydrothermal systems and experimental hot-water/rock interactions. Geochim Cosmochim Acta, 28, 1323–1357.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Fuhong, R., & Shuqin, J. (1988). Distribution and formation of high fluorine groundwater in China. Environ Geol Water Sci, 12, 3–10.

    Article  Google Scholar 

  • Gaciri, S. J., & Davies, T. C. (1993). The occurrence and geochemistry of fluoride in some natural waters of Kenya. Journal of Hydrology, 143, 395–412.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling worlds water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Gizaw, B. (1996). The origin of high bicarbonate and fluoride concentrations in waters of the main Ethiopian rift valley. J Afr Earth Sci, 22, 391–402.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Deshpande, R. D., Agarwal, M., & Raval, B. R. (2005). Origin of high fluoride in groundwater in the North Gujarat-Cambay region, India. Hydrogeology Journal, 13, 596–605.

    Article  CAS  Google Scholar 

  • Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentration in groundwaters of the Taiyuan Basin, Northern China. Journal of Geochemical Exploration, 93, 1–12.

    Article  CAS  Google Scholar 

  • Guo, H., & Wang, Y. (2005). Geochemical characteristics of shallow ground water in Datong basin, northwestern China. Journal of Geochemical Exploration, 87, 109–120.

    Article  CAS  Google Scholar 

  • Handa, B. K. (1975). Geochemistry and genesis of fluoride-containing ground waters in India. Ground Water, 13, 275–281.

    Article  CAS  Google Scholar 

  • Jacks, G., Bhattacharya, P., Chaudhary, V., & Singh, K. P. (2005). Controls on the genesis of some high-fluoride ground waters in India. Applied Geochemistry, 20, 221–228.

    Article  CAS  Google Scholar 

  • Karunakaran C. (1974). Fluorine-bearing minerals in India—their geology, mineralogy, and geochemistry, Indian Academy of Geological Science. In: Proceedings, Symposium on Fluorosis, Osmania University, Hyderabad, 3–18

  • Kim, K., & Jeong, Y. G. (2005). Factors influencing natural occurrence of fluoride-rich ground waters: a case study in the southeastern part of the Korean Peninsula. Chemosphere, 58, 1399–1408.

    Article  CAS  Google Scholar 

  • Kruse, E., & Ainchil, J. (2003). Fluoride variations in groundwater of an area in Buenos Aires Province, Argentina. Environmental Geology, 44, 86–89.

    CAS  Google Scholar 

  • Kundu, N., Panigrahi, M. K., Tripathy, S., Munshi, S., Powell, M. A., & Hart, B. R. (2001). Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa. Ind Environ. Geol, 41, 451–460.

    Article  CAS  Google Scholar 

  • Lesan, W. R. (1987). Dental fluorosis: a review of literature with comments on tropical characteristic. E Afr Med J., 64, 493–497.

    CAS  Google Scholar 

  • Linthurst, R. A., Bourdeau, P., & Tardiff, R. G. (1995). Methods to assess the effect of chemicals on ecosystems (pp. 307–335). New York: Wiley.

    Google Scholar 

  • Mamatha, P., & Rao, S. M. (2010). Geochemistry of fluoride rich groundwater in Kolar and Tumkur districts of Karnataka. Environ Earth Sci, 61, 131–142.

    Article  CAS  Google Scholar 

  • Nanyaro, J. T., Aswathanarayana, U., Mungere, J. S., & Lahermo, P. (1984). Ageochemical model for the abnormal fluoride concentrations in waters in parts of northern Tanzania. J Arf Earth Sci., 2, 129–140.

    CAS  Google Scholar 

  • Nordstrom, D. K., & Jenne, E. A. (1977). Fluorite solubility equilibria in selected geothermal waters. Geochim Cosmochim Acta, 41, 175–188.

    Article  CAS  Google Scholar 

  • Pickering, W. F. (1985). The mobility of soluble fluoride in soils. Environ Pollution (Ser B), 9, 281–308.

    Article  CAS  Google Scholar 

  • Rafique, T., Naseem, S., Bhanger, M. I., & Usmani, T. H. (2008). Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environmental Geology, 56, 2317–2326.

    Article  Google Scholar 

  • Ramesam, V., & Rajagopalan, K. (1985). Fluoride ingestion into the natural waters of hard-rock areas, Peninsular India. J Geol Soc India, 26, 125–132.

    CAS  Google Scholar 

  • Ramamohana Rao, N. V., Rao, N., Surya Prakash Rao, K., & Schuiling, R. D. (1993). Fluorine distribution in waters of Nalgonda District, Andhra Pradesh, India. Env Geol, 21, 84–89.

    Article  Google Scholar 

  • Saral, K., & Rao, P. R. (1993). Endemic fluorosis in the village Ralla Anantapuram in Andhra Pradesh—an epidemiological study. Fluoride, 26, 177–180.

    Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon.3: weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92, 8292–8302.

    Article  Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: a water–rock interaction study. Env Geol, 40, 1084–1087.

    Article  CAS  Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2003). Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43, 731–736.

    CAS  Google Scholar 

  • Singh, B., Gaur, S., & Garg, V. K. (2007). Fluoride in drinking water and human urine in Southern Haryana, India. Journal of Hazardous Materials, 144, 147–151.

    Article  CAS  Google Scholar 

  • Subba Rao, N., & John, D. D. (2003). Fluoride incidence in groundwater in an area of Peninsular India. Env Geol, 45, 243–251.

    Article  Google Scholar 

  • Susheela, A. K., Kumar, A., Bhatnagar, M., & Bahadur, M. (1993). Prevalence of endemic fluorosis with gastro-intestinal manifestations in people living in some North-Indian villages. Fluoride, 26, 177–180.

    Google Scholar 

  • Todd, D. K. (1980). Ground water hydrology (2nd ed.). New York: Wiley.

    Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality (3rd ed.). Geneva: World Health Organization.

    Google Scholar 

  • Wang, Y., & Reardon, E. J. (2001). Activation and regeneration of a soil sorbent for defluoridation of drinking water. Applied Geochemistry, 6, 531–539.

    Article  Google Scholar 

  • Wodeyar, B. K., & Sreenivasan, G. (1996). Occurrence of fluoride in the groundwaters and its impact in Peddavankahalla basin, Bellary District, Karnataka—a preliminary study. Current Science, 70, 71–73.

    CAS  Google Scholar 

  • Zhang, B., Hong, M., Zhao, Y., Lin, X., Zhang, X., & Dong, J. (2008). Distribution and risk assessment of fluoride in drinking water in the west plain region of Jilin province, China. Environmental Geology, 56, 281–287.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank UGC, New Delhi for financial assistance. We also thank Central Instrumentation Facility (CIF), BIT, Mesra for providing analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Dey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, R.K., Swain, S.K., Mishra, S. et al. Hydrogeochemical processes controlling the high fluoride concentration in groundwater: a case study at the Boden block area, Orissa, India. Environ Monit Assess 184, 3279–3291 (2012). https://doi.org/10.1007/s10661-011-2188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2188-2

Keywords

Navigation