Skip to main content
Log in

Hydrogeochemical characterization of contaminated groundwater in Patancheru industrial area, southern India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The groundwater is one of the most contaminated natural resources in Patancheru industrial area due to unplanned and haphazard industrial growth and urbanization without following basic pollution control norms. The rapid industrialization initiated in early 1970 has started showing up its after effects few years later in the form of physiochemical contamination of the both surface and groundwater bodies of the area. It has resulted in local people being deprived of safe drinking water, plant and aquatic life has severely affected, and situation is deteriorating over the years in the area in spite of some preventive and remedial measures being initiated. The focus of the present study is to understand the chemical characteristics of groundwater and geochemical processes the contaminant water is undergoing which are normally imprinted in its ionic assemblages. The water samples collected in pre- and post-monsoon seasons from forty two groundwater and four surface water sources were analyzed for major constituents such as Ca2+, Mg2+, Na+, K+, CO 3 , HCO 3 , Cl, SO 2−4 , NO 3 , and F, and selected samples were tested for ten important trace metals like Fe, Pb, Bi, Mn, Cr, Co, Ni, Cu, Zn, and Cd. Na+ among cations and Cl among anions dominate the water in both the seasons where as Ca2+, HCO 3 , and Cl show significant reduction in their ionic strength in post-monsoon. The groundwater in general is of mixed type, but most of it belong to Na+–Cl, Na+–HCO 3 , Ca2+–Mg2+–HCO 3 , and Ca2+–Mg2+–Cl facies. The Na+ and Ca2+ are in the transitional state with Na+ replacing Ca2+ and HCO 3 –Cl due to physiochemical changes in the aquifer system. The evaluation of hydrochemistry through various ionic indices, ratios, and plots suggest that silicate–carbonate weathering, ion exchange, dissolution, and evaporation processes are responsible for origin of the present chemical status of the groundwater which is also controlled by the contamination from extraneous sources that could have accelerated the dissolution processes. Gibbs plots authenticate that the evolution of water chemistry is influenced by interaction of percolating water with aquifer matrix apart from anthropogenic enrichment of elements which get over concentrated due to evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abollino, A., Aceto, M., Buoso, S., Gasparon, M., Green, W. J., & Malandrino, M. (2004). Distribution of major, minor and trace elements in lake environments of Antarctica. Antarctic Science, 16(3), 277–291. doi:10.1017/S0954102004002111.

    Article  Google Scholar 

  • Apadaca, L. E., Jeffrey, B. B., & Michelle, C. S. (2007). Water quality in shallow alluvium aquifers, Upper Colorado river basin, Colorado. J. Am. War. Res. Acs., 38(1), 133–148.

    Google Scholar 

  • APHA. (1992). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • BIS (2003) Indian standard specification for drinking water (IS 10500—91, revised 2003).

  • Benony, K. K. (2006). Hydrochemical characterization of groundwater in the Acra plains of Ghana. Environmental Geology, 50, 299–311. doi:10.1007/s00254-006-0206-4.

    Article  Google Scholar 

  • Benony, K. K. (2007). Hydrochemical frame work of groundwater in the Ankobra Basin, Ghana. Aquatic Geochemistry, 13, 41–74. doi:10.1007/s10498-006-9006-4.

    Article  Google Scholar 

  • Census. (2001). District Census series—Medak district, Census Depart. New Delhi: Government of India.

    Google Scholar 

  • Cerling, T. E., Pederson, B. L., & Damn, K. L. V. (1989). Sodium-calcium ion exchange in the weathering of shales implication for global weathering budgets. Geology, 17, 552–554.

    Article  CAS  Google Scholar 

  • Chadha, D. K., & Tamta, S. R. (1999). Occurrence and origin of groundwater fluoride in phreatic zone of Unnao district, Uttar Pradesh. Journal of Applied Geochemistry, 1(1), 21–26.

    Google Scholar 

  • Das, J. (2003). Geochemistry of trace elements in the groundwater of Cuttack city, India. Water, Air, and Soil Pollution, 147, 129–140. doi:10.1023/A:1024569422322.

    Article  CAS  Google Scholar 

  • Das, B. K., & Kaur, P. (2001). Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Journal of Environmental Geology, 40, 908–917.

    Article  CAS  Google Scholar 

  • Das, B. K., & Kaur, P. (2007). Geochemistry of surface and sub-surface waters of Rewalsar Lake, Mandi District, Himachal Pradesh: Constrains on weathering and erosion. Journal of the Geological Society of India, 69, 1020–1030.

    CAS  Google Scholar 

  • Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. Journal of the Geological Society of India, 47, 179–188.

    CAS  Google Scholar 

  • Drever, J. I. (1988). The geochemistry of natural waters. New York: Prentice-Hill.

    Google Scholar 

  • Earth Summit. (1992). Programme of action for sustainable development: Agenda 21. Rio de Janeiro: UNCED.

    Google Scholar 

  • Elango, L., & Kannan, R. (2007). Rock-water interaction and its control on chemical composition of groundwater. Chapter 11. Development in Environmental Sciences, 5, 229–243. doi:10.1012/S1478-8177(07)050011-5.

    Article  CAS  Google Scholar 

  • Elango, L., Knnan, R., & Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeochemical processes of groundwater in part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4), 157–166.

    Article  Google Scholar 

  • Fisher, R. S., & Mulican, W. F., III. (1997). Hydrogeochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the Northern Chihuahua desert, Trans-Pecos, Texas USA. Hydrogeology Journal, 10(4), 455–474.

    Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1971). Evolution of sedimentary rocks. New York: Norton.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world’s water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Govil, P., Reddy, G., & Krishna, A. (2001). Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India. Environmental Geology, 41(3–4), 461–469.

    CAS  Google Scholar 

  • Gurdak, J. J., Hanson, R. T., McMahon, P. B., Bruce, B. W., McCray, J. E., Thyne, G. D., et al. (2007). Climate variability controls on unsaturated water and chemical movement, High Plans Aquifer, USA. Vadose Zone Journal, 6, 533–547.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1991). Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water Supply Paper-2254: 264. Jodhpur: Scientific.

  • Holden, W. S. (1970). Water treatment and examination. London: Churchill.

    Google Scholar 

  • Huh, Y., Tsoi, M. Y., Zaitiser, A., & Edward, J. N. (1998). The fluvial geochemistry of the river of Eastern Siberia. 1. Tributaries of Lena river drainage the sedimentation platform of the Siberia Craton. Geochemica et Cosmochimica Acta, 62, 1657–1676.

    Article  CAS  Google Scholar 

  • Jankowski, J., Acworth, R. I., & Shekarforoush, S. (1998). Reverse ion exchange in a deeply weathered porphyritic dacite fractured aquifer system, Yass, New South Wales, Australia. In G. B. Arehart & J. R. Hulston (Eds.), Proceedings of the 9th international symposium, water–rock interaction (pp. 243–246). Rotterdam: Balkema.

    Google Scholar 

  • Kim, K. (2003). Long-term disturbance of groundwater chemistry following well installation. Groundwater, 41, 780–789.

    Article  CAS  Google Scholar 

  • Knape, S., & Graffner, O. (2002). Natural hydrochemical variations in small catchments with thin soil layers and crystalline bedrock in Sweden. In ERB and Northern European FRIEND Project 5. 1. Natural hydrochemical variations Conference, Demänovská dolina, Slovakia.

  • Kumar, S. K., Pande, A. K., & Biksham, G. (1997). Toxic trace element pollution in groundwater around Patancheru and Bolarum industrial areas Andhra Pradesh, India. A graphic approach. Environmental Monitoring and Assessment, 45(1), 57–80.

    Article  Google Scholar 

  • Kumar, M., Rmanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039. doi:10.1007/s00254-006-0275-4.

    Article  CAS  Google Scholar 

  • Kumar, M., Kumari, K., Singh, U. K., & Ramanathan, A. L. (2008). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach. Environmental Geology, 57, 873–884. doi:10.1007/s00254-008-1367-0.

    Article  Google Scholar 

  • Kumar, P., Kumar, M., Ramanathan, A. L., & Tsujimur, M. (2009a). Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: A source identification perspective. Environmental Geochemistry and Health. doi:10.1007/s10653-009-9270-5.

  • Kumar, P., Kumar, M., Ramanathan, A. L., & Tsujimur, M. (2009b). Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: A source identification perspective. Environmental Geochemistry and Health, 32, 129–146. doi:10.1007/s10653-009-9270-5.

    Article  Google Scholar 

  • Langaneger, O. (1987). Groundwater quality an important factor for selecting hand pumps. BP 1850, 01 Abidjan, Cote d’Ivoire.

  • Lavitt, N., Acworth, R. I., & Jankowski, J. (1997). Vertical hydrogeochemical zonation in a coastal section of the Botany Sands aquifer, Sydney, Australia. Hydrogeology Journal, 5, 64–74.

    Article  Google Scholar 

  • Leung, C. M., & Jiao, J. J. (2006). Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in mid-levels area, Hong Kong. Water Research, 40, 753–767. doi:10.1016/j.watres.2005.12.016.

    Article  CAS  Google Scholar 

  • May, A. L., & Loucks, M. D. (1995). Solute and isotope geochemistry and groundwater flow in the Central Wasatch Range, Utah. Journal of Hydrology, 170, 795–840.

    Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved leads. American Journal of Science, 287, 401–428.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. S., Puranik, S. C., & Singh, V. P. (2010). Trace element concentration in groundwater of Pesarlanka Island, Krishna Delta, India. Environmental Monitoring and Assessment, 163, 215–227. doi:10.1007/s10661-009-0828-6.

    Article  CAS  Google Scholar 

  • Newcomb, W. D., William, D., & Donald, R. J. (2002). Trace element distribution in US groundwaters: A probabilistic assessment using public domain data. Applied Geochemistry, 17, 49–57. doi:10.1016/S0883-2927(01)00089-0.

    Article  CAS  Google Scholar 

  • Niranjanbabu, P., Rao, N. S., Rao, P. C., & Rao, J. P. (1997). Groundwater quality and its importance in the land developmental programmes. Indian Journal of Geology, 69(4), 305–312.

    Google Scholar 

  • Pophare, M. A., & Dewalkar, S. M. (2007a). Groundwater quality in eastern and southeastern parts of Rajwa Tehsil, Chendrapur district, Maharashtra. Gondwana Geology Magazine Sp. Vol., 11, 119–126.

    Google Scholar 

  • Pophare, M. A., & Dewalkar, S. M. (2007b). Groundwater quality in eastern and south eastern parts of Rajura Tehsil, Chendrapur district, Maharashtra. Gondwana Geology Magazine Sp., 11, 119–129.

    Google Scholar 

  • Raju, J. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environmental Geology, 52, 1067–1074.

    Article  CAS  Google Scholar 

  • Ramesh, R., Shiv Kumar, K., Eswaramoorthi, S., & Purvaja, G. R. (1995). Migration and contamination of major and trace elements in groundwater of Madras City, India. Environmental Geology, 25, 126–136. doi:10.1007/BF00767869.

    Article  CAS  Google Scholar 

  • Ramessur, R. T. (2000). Determination of some dissolved trace metals from groundwater in Mauritius using inductively-coupled plasma–mass spectrometry. Science and Technology-Research Journal, 5, 65–78.

    Google Scholar 

  • Rao, N. S. (2002). Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Geology, 41, 552–562.

    Article  CAS  Google Scholar 

  • Rao, N. S. (2006). Seasonal variation of groundwater quality in a part of Guntur district, AP, India. Environmental Geology, 49, 413–429.

    Article  CAS  Google Scholar 

  • Rao Gurunadha, V. V. S., Dhar, R. L., & Subrahmanyam, K. (2001). Assessment of contaminant migration in groundwater from an industrial development area, Medak district, A.P, India. Water, Air, and Soil Pollution, 128(3–4), 369–389.

    Article  Google Scholar 

  • Rao, N. S., & Rao, P. S. (2009). Major ion chemistry of groundwater in a river basin: A study from India. Environmental Earth Science. doi:10.1007/s12665-009-0389-6.

  • Rao, N. S., Rao, G. S., Rao, S. V., Reddy, P. M., & Devadas, D. J. (1999). Environmental control of groundwater quality in a tribal region of Andhra Pradesh, India. Indian Journal of Geology, 71(4), 299–304.

    Google Scholar 

  • Rao, N. S., Nirmal, I. S., & Suryanarayana, K. (2005). Groundwater quality in a coastal area—a case study from Andhra Pradesh, India. Environmental Geology, 48, 534–550.

    Article  Google Scholar 

  • Rashid, U., & Izrar, A. (2007). Hydrochemical characteristics of groundwater in parts of Kushva-Yamuna basin, Muzaffarnagar district, UP. Journal of the Geological Society of India, 69, 970–982.

    Google Scholar 

  • Reddy, Ch. R. K. (2002). Hydrogeological framework and development prospects of Medak district, Andhra Pradesh. Central Ground Water Board (CGWB), Southern Region, Hyderabad, report.

  • Reddy, A. G. S., Reddy, D. V., Rao, P. N., & Maruthy Prasad, K. (2010). Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India. Environmental Monitoring and Assessment. doi:10.1007/s10661-009-1300-3.

  • Saibaba, B. (2005). Groundwater quality studies in Patancheru industrial area and environs, Medak Reddy District, Andhra Pradesh (AAP 2004-05). Central Ground Water Board (CGWB) Report. New Delhi: Ministry of Water Resources, Government of India.

    Google Scholar 

  • Saibaba, B., Reddy, A. G. S., Niranjan Kumar, K., & Sudarshan, G. (2007). Effect on groundwater quality in Patancheru industrial area and environs, Medak district, AP, India. Journal of the Indian Academy of Geosciences, 50(2), 45–56.

    Google Scholar 

  • Sarin, M. M., Krishnaswmay, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochim. Cosmochim Acta, 53, 997–1009.

    Article  CAS  Google Scholar 

  • Schoeller, H. (1967). Qualitative evaluation of groundwater resources. In: Methods and techniques of groundwater investigation and development. Water Research, series-33, UNESCO (pp 44–52).

  • Singh Abhay, K. R., Mondal, G. C., Singh, S., Singh, P. K., Singh, T. B., Tewary, B. K., et al. (2007). Aquatic geochemistry of Dhanbad, Jharkhand: Source evaluation and quality assessment. Journal of the Geological Society of India, 69, 1088–1102.

    Google Scholar 

  • Singh, P., Kunwar, A. M., Mohan, D., Singh, V. K., & Saritha singh. (2006). Evaluation of groundwater quality in northern Indo-Gangetic alluvium region. Environmental Monitoring and Assessment, 112, 211–230. doi:10.1007/s10661-006-0357-5.

    Article  CAS  Google Scholar 

  • Soltan, M. E. (1998). Characterization, classification and evaluation of some groundwater samples in Upper Egypt. Chemos, 37, 735–747.

    Article  CAS  Google Scholar 

  • Soltan, M. E. (1999). Evaluation of groundwater quality in Dakhla Oasis (Egyptian Western Desert). Environmental Monitoring and Assessment, 57, 157–168.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon, the influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Tirumalesh, K., Shivanna, K., Sriraman, A. K., & Tyagi, A. K. (2010). Assessment of quality and geochemical processes occurring in groundwaters near central air conditioning plant site in Trombay, Maharashtra, India. Environmental Monitoring and Assessment, 163, 171–184. doi:10.1007/s10661-009-0825-9.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology. Singapore: Wiley.

    Google Scholar 

  • WHO. (1984). Guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • Zhang, J., Huang, W. W., Letolle, R., & Jusserand, C. (1995). Major element chemistry of the Huanghe (Yellow River), China—weathering processes and chemical fluxes. Journal of Hydrology, 168, 173–203.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers for their very keen observation and meticulous scrutiny of the paper which had enhanced its quality very much. The authors thank the chairman of CGWB for his encouragement and according permission to publish the paper. The views mentioned and inferences drawn are solely of the authors and do not reflect the CGWB viewpoint.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. S. Reddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

Percentage of ionic contents and their seasonal variations in groundwater (XLS 17 kb)

Supplemental Table 2a

Major element ratios and other indices for groundwater samples—pre-monsoon (XLS 39 kb)

Supplemental Table 2b

Major element ratios and other indices for groundwater samples—post-monsoon (XLS 37 kb)

Supplemental Fig. 1

a Na+ + K+ vs Tz+—pre-monsoon. b Na+ + K+ vs Tz+—post-monsoon (XLS 34 kb)

Supplemental Fig. 2

a Ca2+ + Mg2+ vs Tz+—pre-monsoon. b Ca2+ + Mg2+ vs Tz+—post-monsoon (XLS 27 kb)

Supplemental Fig. 3

a Na+ + K+ vs Cl + SO 2−4 —pre-monsoon. b Na+ + K+ vs Cl + SO 2−4 —post-monsoon (XLS 26 kb)

Supplemental Fig. 4

a HCO 3 vs Ca2+—pre-monsoon. b HCO 3 vs Ca2+—post-monsoon (XLS 40 kb)

Supplemental Fig. 5

a SO 2−4 vs Ca2+—pre-monsoon. b SO 2−4 vs Ca2+—post-monsoon (XLS 38 kb)

Supplemental Fig. 6

a SO 2−4  + HCO 3 vs Ca2+ + Mg2+—pre-monsoon. b SO 2−4  + HCO 3 vs Ca2+ + Mg2+—post-monsoon (XLS 32 kb)

Supplemental Fig. 7

a EC vs Na+/Cl ratio—pre-monsoon. b EC vs Na+/Cl ratio—post-monsoon (XLS 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, A.G.S., Saibaba, B. & Sudarshan, G. Hydrogeochemical characterization of contaminated groundwater in Patancheru industrial area, southern India. Environ Monit Assess 184, 3557–3576 (2012). https://doi.org/10.1007/s10661-011-2208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2208-2

Keywords

Navigation