Skip to main content
Log in

A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad, F., Yahaya, A. S., & Farooqi, M. A. (2006). Characterization and geotechnical properties of Penang residual soils with emphasis on landslides. American Journal of Environmental Sciences, 2(4), 121–128.

    Article  Google Scholar 

  • Canty, M. J., Nielsen, A. A., & Schmidt, M. (2004). Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment, 91, 441–451.

    Article  Google Scholar 

  • Chander, G., & Markham, B. (2003). Revised Landsat-5 TM radiometric calibration procedure and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2674–2677.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893–903.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Barsi, J. A. (2009). Revised landsat-5 thematic mapper radiometric calibration. IEEE Geoscience and Remote Sensing Letters, 4(3), 490–494.

    Article  Google Scholar 

  • Chen, D., & Brutsaert, W. (1998). Satellite-sensed distribution and spatial patterns of vegetation parameters over a tallgrass prairie. Journal of the Atmospheric Sciences, 55, 1225–1238.

    Article  Google Scholar 

  • Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133–146.

    Article  Google Scholar 

  • Coppin, P., Jonckheere, I., Nackerts, K., & Muys, B. (2004). Digital change detection methods in ecosystem monitoring: An review. International Journal of Remote Sensing, 25(9), 1565–1596.

    Article  Google Scholar 

  • Ding, M., Zhang, Y., Liu, L., Zhang, W., Wang, Z., & Bai, W. (2007). The relationship between NDVI and precipitation on the Tibetan Plateau. Journal of Geographical Sciences. doi:10.1007/s11442-007-0259-7.

  • Du, Y., Teillet, P. M., & Cihlar, J. (2002). Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82, 123–134.

    Article  Google Scholar 

  • Eckhardt, D. W., Verdin, J. P., & Lyford, G. R. (1990). Automated update of an irrigated lands GIS using SPOT HRV imagery. Photogrammetric Engineering and Remote Sensing, 56, 1515–1522.

    Google Scholar 

  • Furby, S. L., & Campbell, N. A. (2001). Calibrating images from different dates to like-value counts. Remote Sensing of Environment, 77, 186–196.

    Article  Google Scholar 

  • Helmer, E. H., & Ruefenacht, B. (2007). A comparison of radiometric normalization methods when filling cloud gaps in Landsat imagery. Canadian Journal of Remote Sensing, 33(4), 325–340.

    Article  Google Scholar 

  • Janzen, D. T., Fredeen, A. L., & Wheate, R. D. (2006). Radiometric correction techniques and accuracy assessment for Landsat TM data in remote forested regions. Canadian Journal of Remote Sensing, 32(5), 330–334.

    Article  Google Scholar 

  • Kabbara, N., Benkhelil, J., Awad, M., & Barale, V. (2008). Monitoring water quality in the coastal area of Tripoli (Lebanon) using high-resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5), 488–495.

    Article  Google Scholar 

  • Kaufman, Y. J. (1988). Atmospheric effect on spectral signature. IEEE Trans on Geoscience and Remote Sensing, 26(4), 441–451.

    Article  Google Scholar 

  • Liang, S., Fallah-Adl, H., Kalluri, S., Jaja, J., Kaufman, Y. G., & Townshend, J. R. G. (1997). An operational atmospheric correction algorithm for Landsat Thematic Mapper imagery over the land. Journal of Geophysical Research, 102, 173–186.

    Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2407.

    Article  Google Scholar 

  • Lunetta, R. S., & Elvidge, C. D. (1998). Remote sensing change detection: Environment monitoring methods and applications. London: Taylor and Francis.

    Google Scholar 

  • Mather, P. M. (2004). Computer processing of remotely-sensed images—An introduction (3rd ed., p. 134). New York: Wiley.

    Google Scholar 

  • Nelson, T., Wilson, H. G., Boots, B., & Wulder, M. A. (2005). Use of ordinal conversion for radiometric normalization and change detection. International Journal of Remote Sensing, 26(3), 535–541.

    Article  Google Scholar 

  • Rahman, H., & Dedieu, G. (1994). SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. International Journal of Remote Sensing, 15, 123–143.

    Article  Google Scholar 

  • Raynolds, M. K., Comiso, J. C., Walker, D. A., & Verbyla, D. (2008). Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment, 112, 1884–1894.

    Article  Google Scholar 

  • Richter, R. (1990). A fast atmospheric correction algorithm applied to Landsat TM images. International Journal of Remote Sensing, 11(11), 159–166.

    Article  Google Scholar 

  • Richter, R. (1998). Correction of satellite imagery over mountainous terrain. Applied Optics, 37(18), 4004–4015.

    Article  CAS  Google Scholar 

  • Saunders, R. W., & Kriebel, K. T. (1988). An improved method for detecting clear sky and cloudy radiances from AVHRR data. International Journal of Remote Sensing, 9, 123–150.

    Article  Google Scholar 

  • Schott, J. R., Salvaggio, C., & Volchok, W. J. (1988). Radiometric scene normalization using pseudoinvariant features. Remote Sensing of Environment, 26, 1–16.

    Article  Google Scholar 

  • Schroeder, T. A., Cohen, W. B., Song, C., Canty, M. J., & Yang, Z. (2006). Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment, 103, 16–26.

    Article  Google Scholar 

  • Simpson, J. J., & Gobat, J. I. (1996). Improved cloud detection for daytime AVHRR sense over land. Remote Sensing of Environment, 55, 21–49.

    Article  Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., Labed-Nachbrand, J., & Nerry, F. (2002). Surface emissivity retrieval from Digital Airborne Imaging Spectrometer data. Journal of Geophysical Research, 107(D23), 4729. doi:10.1029/2002JD002197.

    Article  Google Scholar 

  • Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sensing of Environment, 5, 230–244.

    Article  Google Scholar 

  • Sun, H., Wang, C., & Niu, Z. (1998). Analysis of the vegetation cover change and the relationship between NDVI and environment factors by using NOAA time series data. Journal of Remote Sensing, 2(3), 205–210.

    Google Scholar 

  • Sun, Z., Ma, R., & Wang, Y. (2008). Using Landsat data to determine land use changes in Datong basin, China. Journal of Environmental Geology. doi:10.1007/s00254-008-1470-2.

  • Tan, K. C., Lim, H. S., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Science, 60, 1509–1521.

    Article  Google Scholar 

  • Tokola, T., Lofman, S., & Erkkila, A. (1999). Relative calibration of multitemporal landsat data for forest cover change detection. Remote Sensing of Environment, 68, 1–11.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation? Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E., & Hermann, S. M. (2006). Multi-sensor NDVI data continuity: Uncertainty and implications for vegetation monitoring applications. Remote Sensing of Environment, 100, 67–81.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Perez-Cabello, F., & Lasanta, T. (2008). Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sensing of Environment, 112, 3916–3934.

    Article  Google Scholar 

  • Weng, Q. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(22), 1999–2014.

    Google Scholar 

  • Yuan, D., & Elvidge, C. D. (1996). Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51, 117–126.

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support received from the Digital Elevation Models (DEMs) Studies For Air Quality Retrieval From Remote Sensing Data Grant, account number: 304/PFIZIK/638103 and the Environmental Mapping Using Digital Camera Imagery Taken From Autopilot Aircraft Grant, account number: 305/PFIZIK/613606, with additional support from the USM-RU-PRGS Grant, account number: 1001/PFIZIK/831024. Thanks are also extended to the USM technical staff for their support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok Chooi Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, K.C., Lim, H.S., MatJafri, M.Z. et al. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery. Environ Monit Assess 184, 3813–3829 (2012). https://doi.org/10.1007/s10661-011-2226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2226-0

Keywords

Navigation