Skip to main content

Advertisement

Log in

Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Assessment of suitability of groundwater for domestic and agricultural purposes was carried out in Tondiar river basin, Tamil Nadu, India. The study area covers an area of 315 km2 and lies in a semiarid region. Groundwater is the major source for domestic and agricultural activity in this area. Groundwater samples were collected from 45 wells during pre-monsoon and post-monsoon period in the year 2006. The water samples were analysed for physical and chemical characteristics. Suitability of groundwater for irrigation was evaluated based on salinity hazard, sodium percent, sodium adsorption ratio, residual sodium carbonate, US salinity diagram, Wilcox’s diagram, Kelly’s ratio and permeability index. Ca-HCO3, mixed Ca–Mg–Cl and Na–Cl were the dominant groundwater types. High hardness and electrical conductivity in this area makes the groundwater unsuitable for drinking and agricultural purposes. Concentration of trace elements (Mn, Cu, Zn, Pb and Ni) did not exceed the permissible limit for drinking and agricultural purposes. Majority of the groundwater samples were unsuitable for domestic and agricultural purposes except for 31% and 36%, which were suitable for drinking and irrigation purposes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghazadeh, N., & Mogaddam, A. (2010). Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, northwest of Iran. Environmental Monitoring and Assessment, doi:10.1007/s10661-010-1575-4.

  • Agrawal, V., & Jagetai, M. (1997). Hydrochemical assessment of groundwater quality in Udaipur city, Rajasthan, India. Proc. of National conference on dimensions of environmental stress in India. Department of Geology, MS University, Baroda, India, 151–154.

  • Ahmad, Z., & Qadir, A. (2011). Source evaluation of physicochemically contaminated groundwater of Dera Ismail Khan area, Pakistan. Environmental Monitoring and Assessment, 175(1–4), 9–21.

    Article  CAS  Google Scholar 

  • Alexakis, D. (2011). Assessment of water quality in the Messolonghi–Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods. Environmental Monitoring and Assessment, doi:10.1007/s10661-011-1884-2.

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington: APHA.

    Google Scholar 

  • Bhardwaj, V., & Singh, D. S. (2010). Surface and groundwater quality characterization of Deoria District, Ganga Plain, India. Environmental Earth Sciences, doi: 10.1007/s12665-010-0709-x.

  • BIS (2003). Bureau of Indian Standards Specification for drinking water. IS: 10500:91. Revised 2003, Bureau of Indian Standards, New Delhi.

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology (pp. 410–420). New York: Wiley.

    Google Scholar 

  • Doneen, L. D. (1964). Water quality for agriculture. Department of Irrigation, University of Calfornia, Davis, 48.

  • Durvey, V. S., Sharma, L. L., Saini, V. P., & Sharma, B. K. (1991). Handbook on the methodology of water quality assessment Rajasthan. India: Agriculture University.

    Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonate in irrigation waters. Soil Science, 69, 123–133.

    Article  CAS  Google Scholar 

  • Edmunds, W. M., & Smedley, P. L. (1996). Groundwater geochemistry and health with special reference to developing countries. Geological Society Special Publication, 113, 91–105.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Frengstad, B., Skrede, A. K. M., Banks, D., Krog, J. R., & Siewers, U. (2000). The chemistry of Norwegian groundwater: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques. Science of the Total Environment, 246, 21–40.

    Article  CAS  Google Scholar 

  • Frengstad, B., Banks, D., & Siewers, U. (2001). The chemistry of Norwegian groundwater: IV. The pH- dependence of element concentrations in crystalline bedrock groundwaters. Science of the Total Environment, 227, 101–117.

    Article  Google Scholar 

  • ISI. (1983). Indian Standard Specification for drinking water. IS: 10500. New Delhi: Indian Standard Institutions.

    Google Scholar 

  • Jeevanandam, M., Kannan, R., Srinivasulu, S., & Rammohan, V. (2006). Hydrochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore, South India. Environmental Monitoring and Assessment, 132(1), 263–274.

    Article  Google Scholar 

  • Karnath, K. R. (1987). Groundwater assessment, development and management (p. 720). New Delhi: Tata McGraw Hill.

    Google Scholar 

  • Kelly, W. P. (1957). Adsorbed sodium cation exchange capacity and percentage sodium sorption in alkali soils. Science, 84, 473–477.

    Google Scholar 

  • Laluraj, C. M., Gopinath, G., & Dineshkumar, P. K. (2005). Groundwater chemistry of shallow aquifers in the coastal zones of Cochin. Industrial Applied Ecology and Environ Research, 3(1), 133–139.

    Google Scholar 

  • Latha, S. S., Ambika, S. R., & Prasad, S. J. (1999). Fluoride contamination status of groundwater in Karnataka. Current Science, 76(6), 730–734.

    CAS  Google Scholar 

  • Mahida, U. N. (1981). Water pollution and disposal of wastewater on land. New Delhi: Tata MCGraw-Hill Publishing.

    Google Scholar 

  • Nickson, R. T., McArthur, J. M., Shrestha, B., Kyaw-Nyint, T. O., Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District. Pakistan Applied Geochemistry, 55–68.

  • Pawer, N. J., & Nikumbh, J. D. (1999). Trace elements geochemistry of groundwater from Behedi basin Nasik districts, Maharastra. Journal of the Geological Society of India, 54, 501–514.

    Google Scholar 

  • Piper, A. M. (1944). A graphical procedure in the geochemical interpretation of water analysis. Transactions American Geophysical Union, 25, 914–928.

    Google Scholar 

  • Ramesh, K. (2008). Hydrochemical studies and effect of irrigation on groundwater quality in Tondiar basin, Tamil Nadu. PhD thesis (Unpublished), Anna University, Chennai, India.

  • Reimann, C., & deCaritat, P. (1998). Chemistry elements in the environment. Factsheets for the geochemists and environmental scientist, 398.

  • Richards, L. A. (1954). Diagnosis and improvement of saline alkaline soils, US Department of Agriculture, HandBook 60 (160).

  • Saleh, A., Al-Ruwaih, F., & Shehata, M. (1999). Hydrogeochemical processes operating within the main aquifers of Kuwait. Journal of Arid Environments, 42, 195–209.

    Article  Google Scholar 

  • Sawyer, C. N., & McCarty, D. L. (1967). Chemistry of sanitary engineers (2nd ed., p. 518). New York: McGraw-Hill.

    Google Scholar 

  • Subba Rao, N. (1993). Environmental impact of industrial effluents in groundwater regions of Visakhapatnam Industrial Complex. Indian Journal of Geology, 65, 35–43.

    Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47, 1099–1110.

    Article  CAS  Google Scholar 

  • Sujatha, D., & Reddy, B. R. (2003). Quality Characterization of groundwater in the south-eastern part of the Ranga Reddy District, Andhra Pradesh, India. Environmental Geology, 44, 579–586.

    Article  CAS  Google Scholar 

  • Szabolcs, I., & Darab, C. (1964). The influence of irrigation water of high sodium carbonate content on soils. In I. Szabolics (Ed.), Proc 8th International Congress Soil Science Sodics Soils, Res Inst Soil Sci Agric Chem Hungarian Acad Sci, ISSS Trans II, 1964, 802–812.

  • Thorne, D. W., & Peterson, H. B. (1954). Irrigated soils. London: Constable and Company.

    Google Scholar 

  • Todd, D. (1980). Groundwater hydrology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Trivedy, R. K., & Geol, P. K. (1984). Chemical and biological methods for water pollution studies. Karad: Environ Publications.

    Google Scholar 

  • USEPA. (1999). National primary drinking water regulations, Available at http:/WWW.epa.gov/OGWD/hfacts.html.

  • WHO. (1989). Health guidelines for the use of wastewater in agriculture and aquaculture. In: Report of a WHO Scientific Group: Technical report series 778, WHO, Geneva, 74.

  • WHO. (1996). Guidelines to drinking water quality. World Health Organisation, Geneva 2:989.

  • WHO. (2004). Fluoride in drinking-water, background document for development of WHO guidelines for drinking-water quality, p. 17.

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. USDA, circular 969, Washington, DC, USA.

Download references

Acknowledgements

We would like to thank Department of Science and Technology's Funds for Improvement in Science and Technology scheme (Grant No. SR/FST/ESI-106/2010), University Grants Commission's Special Assistance Programme (Grant No. UGC DRS II F.550/10/DRS/2007(SAP-1)) and University Grants Commission's Centre with Potential for Excellence in Environmental Science (Grant no. F.No.1-9/2002 (NS/PE)) for their financial support which helped to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Elango.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, K., Elango, L. Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India. Environ Monit Assess 184, 3887–3899 (2012). https://doi.org/10.1007/s10661-011-2231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2231-3

Keywords

Navigation