Skip to main content

Advertisement

Log in

Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Surface soil samples collected from a Pb and Zn mining area in India were subjected to multi-elemental analysis by using inductively coupled plasma–atomic emission spectrometry. Multivariate statistical methods such as principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to analyze the data and to apportion the possible sources of elements in soils of a metal mining area. Soils in this area have elevated heavy metal concentrations especially Pb, Zn, Mn, Cu, As, and Tl. Using principal component (PC) analysis, six components were extracted, out of which two PCs explaining 50.12% of total variance are more important. The first principal component with a high contribution of Ag, As, Be, Cd, Co, Cu, Mg, Mn, Ni, Pb, and Zn was deemed to be technogenic/anthropogenic component, and the second principal component, with high loadings for the five discerning variables (Al, Be, Cr, K, Li), was considered as lithogenic component. The third component having strong loadings of Ba, Ca, K, and Na is supposed to have a mixed origin (lithogenic as well as technogenic). Electrical conductivity and total organic matter were not correlated with any element and also have a strong loading in the fifth component which is probably the biomass and ions present in these soils. The findings of the principal component analysis were also substantiated by the cluster analysis. The present study would not only enhance our knowledge regarding the soil pollution status in the study area but would also provide us information to manage the sources of these elements in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriano, D. C. (1986). Introduction. In: Trace elements in the terrestrial environment (pp. 1–45). New York: Springer.

  • Alloway, B. J. (1990). Heavy metals in soils (p. 100). London: Blackie.

    Google Scholar 

  • Alloway, B. J., & Davies, B. E. (1971). Trace element content of soils affected by base metal mining in Wales. Geoderma, 5, 197–208.

    Article  CAS  Google Scholar 

  • Anju, & Banerjee, D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.

    Article  Google Scholar 

  • Asami, T. (1988a). Environmental pollution by beryllium in Japan. In K. Wolf et al. (Eds.), Contaminated soil (pp. 261–263). Norwood: Kluwer.

    Google Scholar 

  • Asami, T. (1988b). Soil pollution by metals from mining and smelting activities. In W. Salomons & U. Forstner (Eds.), Chemistry and biology of solid waste: Dredged material and mine tailings (pp. 144–169). Berlin: Springer.

    Google Scholar 

  • Asami, T., Mizui, C., Shimada, T., & Kubota, M. (1996). Determination of thallium in soils by flame atomic absorption spectrometry. Fresenius’ Journal of Analytical Chemistry, 356, 348–351.

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384–392.

    Article  CAS  Google Scholar 

  • Borgna, L., Di Lella, L. A., Nannoni, F., Pisani, A., Pizzetti, E., Protano, G., et al. (2009). The high contents of lead in soils of northern Kosovo. Journal of Geochemical Exploration, 101, 137–146.

    Article  CAS  Google Scholar 

  • Cheam, V. (2001). Thallium contamination of water in Canada. Water Quality Research Journal of Canada, 36, 851–877.

    CAS  Google Scholar 

  • Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65, 491–499.

    Article  CAS  Google Scholar 

  • Cotter-Howells, J., & Thornton, I. (1991). Sources and pathways of environmental lead to children in a Derbyshire mining village. Environmental Geochemistry and Health, 13, 127–135.

    Article  CAS  Google Scholar 

  • Coulbourne, P., & Thornton, I. (1978). Lead pollution in agricultural soils. Journal of Soil Science, 29, 513–526.

    Article  Google Scholar 

  • Davies, B. E., Elwood, P. C., Gallacher, J., & Ginnever, R. C. (1985). The relationships between heavy metals in garden soils and house dusts in an old mining area of North Wales, Great Britain. Environmental Pollution, 9B, 255–266.

    Google Scholar 

  • Delvalls, T. A., Saenz, V., Arias, A. M., & Blasco, J. (1999). Thallium in the marine environment: First ecotoxicological assessments in the Guadalquivir estuary and its potential adverse effect on the Doñana European Natural Reserve after the Aznalcollar mining spill. Cienc Mar, 25, 161–175.

    CAS  Google Scholar 

  • Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: A review. Journal of Environmental Quality, 26, 590–602.

    Article  CAS  Google Scholar 

  • Erskine, K. D. (1908). Rajputana Gazetteer IIA. “The Mewar Residency” Ajmer, p. 53.

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Fanning, D. S., & Fanning, M. C. B. (1989). Soil morphology, genesis, and classification. New York: Wiley.

    Google Scholar 

  • Fergusson, J. E. (1990). The heavy elements: Chemistry, environmental impact and health effects. New York: Pergamon.

    Google Scholar 

  • Fernandez-Caliani, J. C., Barba-Brioso, C., Gonzalez, I., & Galan, E. (2009). Heavy metal pollution in soils around the abandoned mine sites of Ibrian pyrite belt (Southwest Spain). Water, Air, and Soil Pollution, 200, 211–226.

    Article  CAS  Google Scholar 

  • Garcia Sanchez, A., Moyano, A., & Munez, C. (1999). Forms of cadmium, lead and zinc in polluted mining soils and uptake by plants (Soria Province, Spain). Communication in Soil Science Plant Analysis, 30, 1385–1402.

    Article  Google Scholar 

  • Gholami, S., & Srikantaswamy, S. (2009). Statistical multivariate analysis in the assessment of river water quality in the vicinity of KRS dam, Karnataka, India. Natural Resources Research, 18, 235–247.

    Article  CAS  Google Scholar 

  • Hanesch, M., Scholger, R., & Dekkers, M. J. (2001). The application of fuzzy c-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Physics Chemistry of Earth, 26, 885–891.

    Article  Google Scholar 

  • Heim, M., Wappelhorst, O., & Markert, B. (2002). Thallium in terrestrial environments—occurrence and effects. Ecotoxicology, 11, 369–377.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India.

    Google Scholar 

  • Jakubowska, M., Pasieczna, A., Zembrzuski, W., Świt, Z., & Łukaszewski, Z. (2007). Thallium in fractions of soil formed on floodplain terraces. Chemosphere, 66, 611–618.

    Article  CAS  Google Scholar 

  • Johnson, M. S., McNielly, T., & Putwain, P. D. (1977). Revegetation of metalliferous mine spoil contaminated by lead and zinc. Environmental Pollution, 12, 261–277.

    Article  CAS  Google Scholar 

  • Johnson, M., Roberts, D., & Firth, N. (1978). Lead and zinc in the terrestrial environment around derelict Metalliferous mines in Wales (U.K.). Science of the Total Environment, 10, 61–78.

    Article  CAS  Google Scholar 

  • Jung, M. C., & Thornton, I. (1996). Heavy metal contamination of soils and plants in the vicinity of a lead–zinc mine, Korea. Applied Geochemistry, 11, 53–59.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soil and plants (3rd ed., p. 356). Boca Raton: CRC.

    Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Education Psychology Measures, 20, 141–151.

    Article  Google Scholar 

  • Kucharski, R., Marchwinska, E., & Gzyl, J. (1992). Agricultural policy in polluted areas. Science of the Total Environment, 6, 61–67.

    Google Scholar 

  • Lee, C. G., Chon, H.-T., & Jung, M. C. (2001). Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Applied Geochemistry, 16, 1377–1386.

    Article  CAS  Google Scholar 

  • Levy, D. B., Barberik, K. A., Siemer, E. G., & Sommers, L. E. (1992). Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado. Journal of Environmental Quality, 2, 185–195.

    Article  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173, 744–749.

    Article  CAS  Google Scholar 

  • Merrington, G., & Alloway, B. J. (1994). The transfer and fate of Cd, Cu, Pb and Zn from two historic metalliferous mine sites in UK. Applied Geochemistry, 9, 677–687.

    Article  CAS  Google Scholar 

  • Misra, K.C. (2000). Interpretation of mineral deposits—II, chapter 4. In Understanding mineral deposits (p. 187). Dordrecht: Kluwer Academic.

  • Mookherjee, A. (1964). The geology of the Zawar lead–zinc mine, Rajasthan, India. Economic Geology, 59, 656–677.

    Article  CAS  Google Scholar 

  • Moreno-Jimenez, E., Penasola, J. M., Manzano, R., Carpena-Ruiz, R. O., Gamarra, R., & Esteban, E. (2009). Heavy metal distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials, 162, 854–859.

    Article  CAS  Google Scholar 

  • Okalebo, J. R., Kennth, W. G., & Woomer, P. L. (1993). Laboratory manual of soil and plant analysis: A working manual (p. 21). Muguga: Soil Chemistry Laboratory, The Kenya Agriculture Research Institute, National Agriculture Research Centre.

    Google Scholar 

  • Pendias, A. K., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: CRC.

    Google Scholar 

  • Peter, A. L. J., & Viraraghavan, T. (2005). Thallium: A review of public health and environmental concerns. Environment International, 31, 493–501.

    Article  CAS  Google Scholar 

  • Qishlaqi, A., Moore, F., & Forghani, G. (2009). Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran; a study based on multivariate data analysis. Journal of Hazardous Materials, 172, 374–384.

    Article  CAS  Google Scholar 

  • Rieuwerts, J. S., Farago, M., Cikrt, M., & Bencko, V. (2000). Differences in lead bioavailability between a smelting and a mining area. Water, Air, and Soil Pollution, 122, 203–229.

    Article  CAS  Google Scholar 

  • Rybicka, E. H. (1996). Impact of mining and metallurgical industries on the environment in Poland. Applied Geochemistry, 11, 3–9.

    Article  Google Scholar 

  • Sencindiver, J. C., & Ammons, J. T. (2000). Minesoil genesis and classification. In R. I. Barnhisel, W. L. Daniels, & R. G. Darmody (Eds.), Reclamation of drastically disturbed lands. Agronomy monograph no. 41 (pp. 595–613). Madison: ASA, CSSA, SSSA.

    Google Scholar 

  • Skousen, J. G., Sexstone, A., & Ziemkiewicz, P. F. (2000). Acid mine drainage control and treatment. In R. I. Barnhisel, W. L. Daniels, & R. G. Darmody (Eds.), Reclamation of drastically disturbed lands, Agronomy monograph no 9 (pp. 131–168). Madison: ASA, CSSA, SSSA.

    Google Scholar 

  • Smith, I. C., & Carson, B. L. (1977). Trace metals in the environment. Thallium, vol. 1. Ann Arbor: Ann Arbor Science.

    Google Scholar 

  • Stuben, D., Berner, Z., Kappes, B., & Puchlet, H. (2001). Environmental monitoring of heavy metals and arsenic from Ag–Pb–Zn mining. Environmental Monitoring and Assessment, 70, 181–200.

    Article  CAS  Google Scholar 

  • Tack, F., Demeyer, A., & Verloo, M. (1993). Using cluster analysis and multiple regression techniques for a more efficient characterization of sediments. In: Proc. CATS II Congress, K.VIV, Antwerpen, Belgium, pp. 2.1–2.4.

  • Tahri, M., Benyaich, F., Bounakhla, M., Bilal, E., Gruffat, J. J., Moutte, J., et al. (2005). Multivariate analysis of heavy metals in soils, sediments and water in the region of Meknes (Central Mexico). Environmental Monitoring and Assessment, 102, 405–417.

    Article  CAS  Google Scholar 

  • Thornton, I. (1996). Impacts of mining on the environment; some local, regional and global issues. Applied Geochemistry, 11, 355–361.

    Article  CAS  Google Scholar 

  • Thornton, I., Moorcroft, S., John, S., Watt, J., Strehlow, C. D., Barltrop, D., et al. (1980). Cadmium at Sipham—a unique example of geochemistry and health. In D. D. Hemphill (Ed.), Trace substances in environmental health (pp. 27–37). Columbia: University of Missouri.

    Google Scholar 

  • Tremel, A., Masson, P., Sterckeman, T., Baize, D., & Mench, M. (1997). Thallium in French agrosystems: 1. Thallium contents in arable soils. Environmental Pollution, 95, 293–302.

    Article  CAS  Google Scholar 

  • Twidwell, L. G., & Beam, C. W. (2002). Potential technologies for removing thallium from mine and process wastewater: An abbreviated annotation of literature. European Journal Minerological Processes Environmental Protection, 2, 1–10.

    CAS  Google Scholar 

  • Ullrich, S. M., Ramsey, M. H., & Rybicka, E. H. (1999). Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. Applied Geochemistry, 14, 187–196.

    Article  CAS  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592.

    Article  CAS  Google Scholar 

  • Verner, J. F., Ramsey, M. H., Rybicka, E. H., & Jedrzejczyk, B. (1996). Heavy metal contamination of soils around a Pb–Zn smelter in Bukowno, Poland. Applied Geochemistry, 11, 11–16.

    Article  CAS  Google Scholar 

  • Vodyanitskii, Y. N. (2009). Criteria of the technogenic nature of heavy metals and metalloids in soils: A review of publications. Eurasian Soil Science, 42, 1053–1061.

    Article  Google Scholar 

  • Xiao, T., Guha, J., Boyle, D., Liu, C., Zheng, B., & Chen, J. (2004). Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Science of the Total Environment, 318, 223–244.

    Article  CAS  Google Scholar 

  • Yang, Ch, Chen, Y., Peng, P., Li, Ch, Chang, X., & Xie, Ch. (2005). Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. Science of the Total Environment, 341, 159–172.

    Article  CAS  Google Scholar 

  • Zitko, V., Carson, W. V., & Carson, W. G. (1975). Thallium: Occurrence in the environment and toxicity to fish. Bulletin of Environmental Contamination and Toxicology, 13, 23–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Dr. Anju) sincerely acknowledges the grants of scholarships awarded by the University Grants Commission and Council of Scientific and Industrial Research at different stages of this work. The authors would also like to thank Dr. M. Dudzinska, Institute of Environmental Protection Engineering, Technical University, Lublin, Poland for providing laboratory facilities for elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anju, M., Banerjee, D.K. Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area, India. Environ Monit Assess 184, 4191–4206 (2012). https://doi.org/10.1007/s10661-011-2255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2255-8

Keywords

Navigation