Skip to main content
Log in

Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdollahi-Nasab, A., Boufadel, M. C., Li, H. L., & Weaver, J. W. (2010). Saltwater flushing by freshwater in a laboratory beach. Journal of Hydrology, 386(1–4), 1–12.

    Article  CAS  Google Scholar 

  • Alpar, B. (2009). Vulnerability of Turkish coasts to accelerated sea-level rise. Geomorphology, 107(1–2), 58–63.

    Article  Google Scholar 

  • American Public Health Association (APHA). (1985). Standard methods for the examination of water and waste (16th ed., p. 100). Washington: Am Public Health Assoc.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Rotterdam: Balkema.

    Book  Google Scholar 

  • Aubert, M., & Atangana, Q. Y. (1996). Self-potential method in hydrogeological exploration of volcanic areas. Ground Water, 34, 1010–1016.

    Article  CAS  Google Scholar 

  • Balaram, V., & Rao, T. G. (2004). Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy, 24(6), 206–212.

    Google Scholar 

  • Brown, E., Skougstad, M. W., & Fishmen, M. J. (1983). Method for collection and analyzing of water samples for dissolved minerals and gases (p. 75). Washington: U.S. Govt. Printing Office.

    Google Scholar 

  • CAMP (2000). Integrated aquifer management plan: Final Report. Gaza coastal aquifer management program. Metcalf and Eddy Inc. in cooperation with the Palestinian Water Authority (PWA). United States Agency for International Development, USAID Contract No. 294-C-00-99-00038-00.

  • Chapellier, D., Fitterman, D., Parasnis, D., & Valla, P. (1991). Application of geophysics to water prospecting in arid and semi-arid areas. Geoexploration, 27(1–2), R7–R7.

    Google Scholar 

  • Chidambaram, S., Kumar, G. S., Prasanna, M. V., Peter, A. J., Ramanthan, A. L., & Srinivasamoorthy. (2008). A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamilnadu, India. Environmental Geology, 57(1), 59–73.

    Article  Google Scholar 

  • Choudhury, K., & Saha, D. K. (2004). Integrated geophysical and chemical study of saline water intrusion. Groundwater, 42(5), 671–677.

    Article  CAS  Google Scholar 

  • Choudhury, K., Saha, D. K., & Chakraborty, P. (2001). Geophysical study for saline water intrusion in a coastal alluvial terrain. Journal of Geophysics, 46, 189–200.

    Google Scholar 

  • Custodio, E. (2010). Coastal aquifers of Europe: An overview. Hydrogeology Journal, 18(1), 269–280.

    Article  CAS  Google Scholar 

  • de Lima, O. A. L., Sato, H. K., & Porsani, M. J. (1995). Imaging industrial contaminant plumes with resistivity techniques. Journal of Applied Geophysics, 34(2), 93–108.

    Article  Google Scholar 

  • Dey, A., & Morrison, H. F. (1979). Resistivity modelling for arbitrary shaped two-dimensional structures. Geophysical Prospecting, 27, 106–136.

    Article  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology. New York: Wiley.

    Google Scholar 

  • Doussan, C., Jouniaux, L., & Thony, J. L. (2002). Temporal variations of SP and unsaturated water flow in loam and clay soils: a seasonal field study. Journal of Hydrology, 267, 173–185.

    Article  Google Scholar 

  • Falgas, E., Ledo, J., Marcuello, A., & Queralt, P. (2009). Monitoring freshwater–seawater interface dynamics with audiomagnetotelluric data. Near Surface Geophysics, 7(5–6), 391–399.

    Google Scholar 

  • Frohlich, R. K., Urish, D. W., Fuller, J., & Reilly, M. O. (1994). Use of geoelectrical method in groundwater pollution surveys in a coastal environment. Journal of Applied Geophysics, 32, 139–154.

    Article  Google Scholar 

  • Frohlich, R. K., Barosh, P. J., & Boving, T. (2008). Investigating changes of electrical characteristics of the saturated zone affected by hazardous organic waste. Journal of Applied Geophysics, 64(1–2), 25–36.

    Article  Google Scholar 

  • Gimenez, E., & Morell, I. (1997). Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellon, Spain). Environmental Geology, 29, 118–131.

    Article  CAS  Google Scholar 

  • Giordana, G., & Montginoul, M. (2006). Policy instruments to fight against seawater intrusion in coastal aquifers: An overview. Vie Et Milieu Life and Environment, 56(4), 287–294.

    Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water. U.S.G.S. Water-Supply Paper, vol. 2254. Washington: US Government Printing Office.

    Google Scholar 

  • Hidalgo, M. C., & Cruz-Sanjulian, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16(7–8), 745–758.

    Article  CAS  Google Scholar 

  • Hounslow, A. W. (1995). Water quality data analysis and interpretation. Boca Raton: Lewis.

    Google Scholar 

  • Ibrahim, D. E., & Hussein, M. T. (1998). Integrated hydrogeophysical methods for detecting and mapping the fresh–saline interface in Wadi Fatimah, Saudi Arabia. Arabian Journal for Science and Engineering, 23(2A), 129–146.

    CAS  Google Scholar 

  • Jayaprakash, M., Giridharan, L., Venugopal, T., Krishna Kumar, S. P., & Periakali, P. (2008). Characterization and evaluation of the factors affecting the geochemistry of groundwater in Neyveli, Tamil Nadu, India. Environmental Geology, 54, 855–867.

    Article  CAS  Google Scholar 

  • Jonathan, M. P., Srinivasalu, S., Thangadurai, N., Ayyamperumal, T., Armstrong-Altrin, J. S., & Ram-Mohan, V. (2008). Contamination of Uppanar River and coastal waters off Cuddalore, southeast coast of India. Environmental Geology, 53(7), 1391–1404.

    Article  CAS  Google Scholar 

  • Jouniaux, L., Maineult, A., Naudet, V., Pessel, M., & Sailhac, P. (2009). Review of self-potential methods in hydrogeophysics. Comptes Rendus Geosciences, 341, 928–936.

    Article  CAS  Google Scholar 

  • Kilty, K. T. (1984). On the origin and interpretation of self-potential anomalies. Geophysical Prospecting, 32, 51–62.

    Article  Google Scholar 

  • Lambrakis, N. (2006). Multicomponent heterovalent chromatography in aquifers. Modelling salinization and freshening phenomena in field conditions. Journal of Hydrology, 323(1–4), 230–243.

    Article  Google Scholar 

  • Lee, S. H., Kim, K. W., Ko, I. W., Lee, S. G., & Hwang, H. S. (2002). Geochemical and geophysical monitoring of saline water intrusion in Korean paddy fields. Environmental Geochemistry and Health, 24(4), 277–291.

    Article  CAS  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131–152.

    Article  Google Scholar 

  • Maineult, A., Strobach, E., & Renner, J. (2008). Self-potential signals induced by periodic pumping tests. Journal of Geophysical Research, 113, B01203.

    Article  Google Scholar 

  • Mondal, N. C., & Singh, V. P. (2011). Hydrochemical analysis of salinization for a tannery belt in Southern India. Journal of Hydrology, 405(2–3), 235–247.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. K. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology, 388(1–2), 100–111.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, S., & Singh, V. S. (2011). Hydrochemical characteristic of coastal aquifer from Tuticorin, Tamil Nadu, India. Environmental Monitoring and Assessment, 175(1–4), 531–550.

    Article  CAS  Google Scholar 

  • Moreira, C. A., & Braga, A. C. D. (2009). Applications of geophysical methods in monitoring contaminated area under natural attenuation. Engenharia Sanitaria E Ambiental, 14(2), 257–264.

    Article  Google Scholar 

  • Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., Kuras, O., Ogilvy, R., et al. (2009). Characterization of seawater intrusion using 2D electrical imaging. Near Surface Geophysics, 7(5–6), 377–390.

    Google Scholar 

  • Ortega-Guerrero, A., Cherry, J. A., & Aravena, R. (1997). Origin of pore water and salinity in the lacustrine aquitard overlying the regional aquifer of Mexico City. Journal of Hydrology, 197(1–4), 47–69.

    Article  CAS  Google Scholar 

  • Park, S. C., Yun, S. T., Chae, G. T., Yoo, I., Shin, K. S., Heo, C. H., et al. (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology, 313(3–4), 182–194.

    Article  CAS  Google Scholar 

  • Radhakrishna, I. (2001). Saline water interface structure in Mahanadi Delta region, Orissa, India. Environmental Geology, 40(3), 369–380.

    Article  Google Scholar 

  • Revil, A., Titov, K., Doussan, C., & Lapenna, V. (2006). Applications of the self-potential method to hydrological problems. Applied Hydrogeophysics, 71, 255–292. Springer Netherlands, NATO Ser. IV.

    Article  Google Scholar 

  • Sanford, W. E., & Pope, J. P. (2010). Current challenges using models to forecast seawater intrusion: Lessons from the Eastern Shore of Virginia, USA. Hydrogeology Journal, 18(1), 73–93.

    Article  CAS  Google Scholar 

  • Sankaran, S., Saheb Rao, S., Krishnakumar, K. (2009). Micro level groundwater quality/groundwater movement in Cuddalore SIPCOT, Tamilnadu (pp.67). Technical Report No. NGRI-2009-GW-689.

  • Sarwade, D. V., Nandakumar, M. V., Kesari, M. P., Mondal, N. C., Singh, V. S., & Singh, B. (2007). Evaluation of seawater ingress into an Indian Attoll. Environmental Geology, 52(2), 1475–1483.

    Article  Google Scholar 

  • Sato, M., & Mooney, H. M. (1960). The electrochemical mechanism of sulfide self-potentials. Geophysics, 25, 226–249.

    CAS  Google Scholar 

  • Singh, V. S., Sarwade, D. V., Mondal, N. C., & Singh, B. (2009). Evaluation of groundwater resources in a tiny Andrott Island, Union Territory of Lakshadweep, India. Environmental Monitoring and Assessment, 158(1–4), 145–154.

    Article  CAS  Google Scholar 

  • Stewart, M. T. (1982). Evaluation of electromagnetic methods for rapid mapping of salt–water interfaces in coastal aquifers. Groundwater, 20(5), 538–545.

    Article  Google Scholar 

  • Urish, D. W. (1983). The practical application of surface electrical resistivity to detection of groundwater pollution. Groundwater, 21(2), 144–152.

    Article  Google Scholar 

  • Vengosh, A., Spivack, A. J., Artzi, Y., & Ayalon, A. (1999). Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resources Research, 35(6), 1877–1894.

    Article  CAS  Google Scholar 

  • Vengosh, A., Kloppmann, W., Marei, A., Livshitz, Y., Gutierrez, A., Banna, M., et al. (2005). Sources of salinity and boron in the Gaza strip: Natural contaminant flow in the southern Mediterranean coastal aquifer. Water Resources Research, 41(W01013), 1–19.

    Google Scholar 

  • Wanfang, Z., Beck, B. F., & Spephenson, J. B. (1999). Investigation of groundwater flow in karst area using component separation of natural potential measurements. Environmental Geology, 37, 19–25.

    Article  CAS  Google Scholar 

  • Ward, N. I. (1995). Trace elements. In F. W. Fifield, & P. J. Haines (Eds.), Environmental analytical chemistry. Chapman and Hall: Blackie.

  • World Health Organization (WHO). (1984). Guideline of drinking quality (pp. 333–335). Washington: World Health Organization.

    Google Scholar 

  • Zilberbrand, M., Rosenthal, E., & Shachnai, E. (2001). Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel. Journal of Contaminant Hydrology, 50(3–4), 175–208.

    Article  CAS  Google Scholar 

  • Zohdy, A. R., Martin, P., Bisdorf, R. J. (1993). A study of seawater intrusion using direct-current soundings in the southeastern part of the Oxnard Plain, California (p.139). USGS Open-File Report 93–524.

Download references

Acknowledgements

The SIPCOT authority, Cuddalore cooperated during the field work. Director, NGRI, Hyderabad had given support and permission to publish this paper. The associate editor, Professor Yu-Pin Lin and three anonymous reviewers had suggested their constructive comments to improve the paper. The authors are thankful to them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankaran, S., Sonkamble, S., Krishnakumar, K. et al. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India. Environ Monit Assess 184, 5121–5138 (2012). https://doi.org/10.1007/s10661-011-2327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2327-9

Keywords

Navigation