Skip to main content
Log in

Geochemical fractionation of trace elements in sediments of Hugli River (Ganges) and Sundarban wetland (West Bengal, India)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A sequential extraction procedure was carried out to determinate the concentrations of 11 elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in different geochemical phases of sediments collected along the Hugli (Ganges) River Estuary and in the Sundarban mangrove wetland, eastern coastal part of India. The chemical speciation of elements was determined using the three-step sequential extraction procedure described by the European Community Bureau of Reference. Total metal concentration was determined using a microwave-assisted acid digestion procedure. Metal concentrations were near the background level except for As for which a moderate pollution can be hypothesized. The mobility order of the metals was: Cd > Mn > Cu > Zn > As > Co > Pb > Ni > Fe > Cr > Al. The highest percentage of Cd (>60%) was found in the most labile phase. Residual fraction was prevailing for Fe, Cr and Al, while Pb was mainly associated with the reducible fraction. Data were compared with Sediment Quality Guidelines to estimate the relationship between element concentrations and adverse biological effects on benthic community, finding the possibility of some toxic effects due to the presence of As in the entire studied area and Cd, only in Calcutta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmilk, A. (2000). Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39, 231–238.

    Article  Google Scholar 

  • Adriano, D. C. (1986). Trace elements in terrestrial environments. New York: Springer.

    Google Scholar 

  • Agnieszka, S., & Wieslaw, Z. (2002). Application of sequential extraction and the ICPAES method for study of the partitioning of metals in fly ashes. Microchemical Journal, 72, 9–16.

    Article  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123(1), 95–105.

    Article  CAS  Google Scholar 

  • Borovec, Z., Tolar, V., & Mraz, L. (1993). Distribution of some metals in sediments of the central part of the Labe (Elbe) River, Czech Republic. Ambio, 22, 200–205.

    Google Scholar 

  • Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell’atti, A., Leo, A. D., & Maci, A. (2006). Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). Marine Chemistry, 99, 227–235.

    Article  CAS  Google Scholar 

  • Caille, N., Tiffreau, C., Leyval, C., & Morel, J. L. (2003). Solubility of metals in an anoxic sediment during prolonged aeration. Science of the Total Environment, 301, 239–250.

    Article  CAS  Google Scholar 

  • Calmano, W., Hong, J., & Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28(8–9), 53–58.

    Google Scholar 

  • Campanella, L., D’Orazio, D., Petronio, B. M., & Pietrantonio, E. (1995). Proposal for a metal speciation study in sediments. Analytica Chimica Acta, 309, 387–393.

    Article  CAS  Google Scholar 

  • Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 53, 619–632.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., & Satpathy, K. K. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., & Saha, S. (2009). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150, 307–322.

    Article  CAS  Google Scholar 

  • Dassenakis, M., Adrianos, H., Depiazi, G., Konstantas, A., Karabela, M., Sakellari, A., & Scoullos, M. (2003). The use of various methods for the study of metal pollution in marine sediments, the case of Euvoikos Gulf, Greece. Applied Geochemistry, 18, 781–794.

    Article  CAS  Google Scholar 

  • Datta, D. K., & Subramanian, V. (1998). Distribution and fractionation of heavy metals in the surface sediments of the Ganges–Brahmaputra–Meghna river system in the Bengal Basin. Environmental Geology, 36, 93–101.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Thomas, R. P., McVey, S. E., Perala, R., Littlejohn, D., & Ure, A. M. (1994). Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 291, 277–286.

    Article  CAS  Google Scholar 

  • Dawson, E. J., & Macklin, M. G. (1998). Speciation of heavy metals in floodplain and flood sediments: a reconnaissance survey of the Aire Valley, West Yorkshire, Great Britain. Environmental Geochemistry and Health, 20, 67–76.

    Article  CAS  Google Scholar 

  • Dowling, C. B., Poreda, R. J., Basu, A. R., & Aggarwal, P. K. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resources Research, 38(9), 1173–1190.

    Article  Google Scholar 

  • Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30, 973–980.

    Article  CAS  Google Scholar 

  • Farnham, I. M., Johannesson, K. H., Singh, A. K., Hodge, V. F., & Stetzenbach, K. J. (2003). Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytica Chimica Acta, 490, 123–138.

    Article  CAS  Google Scholar 

  • Gomez Ariza, J. L., Giraldez, I., Sanchez-Rodas, D., & Moralesm, E. (2000). Metal sequential extraction procedure optimized for heavily polluted and iron Oxide rich sediments. Analytica Chimica Acta, 414, 151–164.

    Article  CAS  Google Scholar 

  • Ho, D., & Evans, G. J. (1997). Operational speciation of cadmium, copper, lead and zinc in the NIST standard reference materials 2710 and 2711 (Monatna soil) by the BCR sequential extraction procedure and flame atomic absorption spectrometry. Analytical Communications, 34, 363–364.

    Article  CAS  Google Scholar 

  • Ianni, C., Magi, E., Rivaro, P., & Ruggieri, N. (2000). Trace metals in Adriatic coastal sediments: distribution and speciation pattern. Toxicological and Environmental Chemistry, 78, 73–92.

    Article  CAS  Google Scholar 

  • Ianni, C., Ruggieri, N., Rivaro, P., & Frache, R. (2001). Evaluation and comparison of two selective extraction procedures for heavy metal speciation in sediments. Analytical Sciences, 17, 1273–1278.

    Article  CAS  Google Scholar 

  • Janaki-Raman, D., Jonathan, M. P., Srinivasalu, S., Armstrong-Altrin, J. S., Mohan, S. P., & Ram-Mohan, V. (2007). Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique. Environmental Pollution, 145, 245–257.

    Article  CAS  Google Scholar 

  • Jonathan, M. P., & Ram Mohan, V. (2003). Heavy metals in sediments of the inner shelf off the Gulf of Mannar, Southeast coast of India. Marine Pollution Bulletin, 46, 263–268.

    Article  CAS  Google Scholar 

  • Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from the Tees estuary, north-east England. Marine Pollution Bulletin, 34(10), 768–779.

    Article  CAS  Google Scholar 

  • Kiratli, N., & Ergin, M. (1996). Partitioning of heavy metals in surface Black Sea sediments. Applied Geochemistry, 11, 775–788.

    Article  CAS  Google Scholar 

  • Long, E. R., Ingersoll, C. G., & MacDonald, D. D. (2006). Calculation and uses of mean sediment quality guideline quotients: a critical review. Environmental Science and Technology, 40, 1726–1736.

    Article  CAS  Google Scholar 

  • Lopez-Sanchez, J. F., Sahuquillo, A., Fiedler, H. D., Rubio, R., Rauret, G., Muntau, H., & Quevauviller, P. (1998). CRM 601, a stable material for its extractable content of heavy metals. Analyst, 123, 1675–1677.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Martin, R., Sanchez, D. M., & Gutierrez, A. M. (1998). Sequential extraction of U, Th, Ce, La and some heavy metals in sediments from Ortigas River, Spain. Talanta, 46, 1115–1121.

    Article  CAS  Google Scholar 

  • Mester, Z., Cremisini, C., Ghiara, E., & Morabito, R. (1998). Comparison of two sequential extraction procedures for metal fractionation in sediment samples. Analytica Chimica Acta, 259, 133–142.

    Article  Google Scholar 

  • Monbet, P. (2006). Mass balance of lead through a small macrotidal estuary: the Morlaix River estuary (Brittany, France). Marine Chemistry, 98, 59–80.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55, 431–442.

    Article  CAS  Google Scholar 

  • Müller, G. (1979). Schwermetalle in den sedimenten des Rheins-Veranderungen seit. Umschan, 79, 133–149.

    Google Scholar 

  • Ngiam, L. S., & Lim, P. E. (2001). Speciation patterns of heavy metals in tropical estuarine anoxic and oxidized sediments by different sequential extraction schemes. Science of the Total Environment, 275, 53–61.

    Article  CAS  Google Scholar 

  • Panda, D., Subramanian, V., & Panigrahy, R. C. (1995). Geochemical fractionation of heavy metals in Chilka Lake (east coast of India)—a tropical coastal lagoon. Environmental Geology, 26, 199–210.

    Article  CAS  Google Scholar 

  • Petersen, W., Wallman, K., Li, P. L., Schroeder, F., & Knauth, H. D. (1995). Exchange of trace elements at the sediment–water interface during early diagenesis processes. Marine and Freshwater Research, 46, 19–26.

    CAS  Google Scholar 

  • Pickering, W. F. (1986). Metal ion speciation—soil and sediments (a review). Ore Geology Reviews, 1, 83–146.

    Article  CAS  Google Scholar 

  • Ragno, G., De Luca, M., & Ioele, G. (2007). An application of cluster analysis and multivariate classification methods to spring water monitoring data. Microchemical Journal, 87, 119–127.

    Article  CAS  Google Scholar 

  • Ramirez, M., Massolo, S., Frache, R., & Correa, J. (2005). Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.

    Article  CAS  Google Scholar 

  • Ramos, L., González, M., & Hernández, L. (1999). Sequential extraction of copper, lead, cadmium, and zinc in sediments from Ebro River (Spain): relationship with levels detected in earthworms. Bulletin of Environmental Contamination and Toxicology, 62, 301–308.

    Article  CAS  Google Scholar 

  • Saha, M., Sarkar, S. K., & Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environment International, 32, 203–207.

    Article  CAS  Google Scholar 

  • Sahuquillo, A., López-Sanchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., & Ure, A. M. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.

    Article  CAS  Google Scholar 

  • Salomon, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin: Springer.

    Book  Google Scholar 

  • Sarkar, S. K., Bhattacharya, B., Debnath, S., Bandopadhaya, G., & Giri, S. (2002). Heavy metals in biota from Sunderban wetland ecosystem, India: Implications to monitoring the environmental assessment. Aquatic Ecosystem Health and Management, 5(2), 207–214.

    Google Scholar 

  • Sarkar, S. K., Bilinski, S. F., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli river, northeast India and their environmental implications. Environment International, 30, 1089–1098.

    Article  Google Scholar 

  • Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, east coast of India: an approach through environmental education. Journal of Cleaner Production, 15, 1559–1567.

    Article  Google Scholar 

  • Sen, M., Chakraborty, A.K., Ghosh, A.K., Bahdopadhaya, KK. (1994). Water quality of the Hooghly: some aspects. Seas Explorers: 14–22.

  • Subramanian, V., & Mohanachandran, G. (1990). Heavy metals distribution and enrichment in the sediments of southern east coast of India. Marine Pollution Bulletin, 21, 324–330.

    Article  CAS  Google Scholar 

  • Sunil Kumar, R. (1996). Distribution of organic carbon in the sediments of Cochin mangroves, south west coast of India. Indian Journal of Marine Science, 25, 274–276.

    Google Scholar 

  • Takarina, N. D., Browne, D. R., & Risk, M. J. (2004). Speciation of heavy metals in coastal sediments of Semarang, Indonesia. Marine Pollution Bulletin, 49, 854–874.

    Article  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thomas, R. P., Ure, A. M., Davidson, C. M., Littlejohn, D., Rauret, G., Rubio, R., & López-Sánchez, J. F. (1994). Three-stage sequential extraction procedure for the determination of metals in river sediments. Analytica Chimica Acta, 286, 423–429.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135.

    Article  CAS  Google Scholar 

  • Usero, J., Gamero, M., Morillo, J., & Gracia, I. (1998). Comparative study of three sequential extraction procedures for metals in marine sediments. Environment International, 24, 478–496.

    Article  Google Scholar 

  • Walkey, A., & Black, T. A. (1934). An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Science, 37, 23–38.

    Google Scholar 

  • Yuan, C., Shi, J., He, B., Liu, J., Liang, L., & Jiang, G. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769–783.

    Article  CAS  Google Scholar 

  • Zdenek, B. (1996). Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177, 237–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Massolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massolo, S., Bignasca, A., Sarkar, S.K. et al. Geochemical fractionation of trace elements in sediments of Hugli River (Ganges) and Sundarban wetland (West Bengal, India). Environ Monit Assess 184, 7561–7577 (2012). https://doi.org/10.1007/s10661-012-2519-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2519-y

Keywords

Navigation