Skip to main content

Advertisement

Log in

Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Metallic pollution caused by elements Zn, Cu, Fe, Pb, Ni, Cd, and Hg in water and sediments of Aras River within a specific area in Ardabil province of Iran is considered. Water and sediment samples were collected seasonally and once respectively from the five selected stations. Regarding WHO published permissible values, only Ni concentration in spring and summer water samples has exceeded the acceptable limit up to four times greater than the limit. The concentration of metals Ni, Pb, and Fe in river water shows a direct relationship with river water discharge and the amount of precipitation. Enhanced soil erosion, bed load dissolution, and runoffs may play a key role in remarkable augmentation of metallic ions concentration. Furthermore, excessive use of pesticides which contain a variety of metallic ions (mainly Cu) in spring and summer may also result in an increase in the metals’ concentration. The potential risk of Ni exposure to the water environment of the study area is assigned to juice, dairy products, edible oil, and sugar cane factories as well as soybean crop lands which are located within the sub-basin of Aras River in the study area. Regarding the sediment samples, the bioavailable metal concentrations indicate an ascending order from the first station towards the last one. In comparison with earth crust, sedimental and igneous rocks the reported metallic concentration values, except for Cd, lie within the low-risk status. Regarding Cd, the reported values in some stations (S2, S4, and S5) are up to ten times greater than that of shale which may be considered as a remarkable risk potential. The industrial and municipal wastewater generated by Parsabad moqan industrial complex and residential areas, in addition to the discharges of animal husbandry centers, may be addressed as the key factors in the sharp increase of metallic pollution potential in stations 4 and 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adekola, F. A., & Eletta, O. A. A. (2007). A study of heavy metal pollution of Asa river, Ilorin, Nigeria; trace metal monitoring and geochemistry. Environmental Monitoring and Assessment, 125, 157–163.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (Ed.). (1995). Heavy metals in soils (2nd ed.). London: Blackie Academic & Professional.

    Google Scholar 

  • Ankley, G. T., Di Toro, D. M., Hansen, D. J., & Berry, W. J. (1996). Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 15, 2056–2066.

    Article  CAS  Google Scholar 

  • APHA. (1992). Standard methods for the examination of water and wastewater. Washington, DC: APHA.

    Google Scholar 

  • Baghvand, A., Nasrabadi, T., Nabi Bidhendi, G. R., Vosoogh, A., Karbassi, A. R., & Mehrdadi, N. (2010). Groundwater quality degradation of an aquifer in Iran central desert. Desalination, 260(1-3), 264.

    Article  CAS  Google Scholar 

  • Boughriet, A., Quddance, B., Fischer, J. C., Wartel, M., & Leman, G. (1992). Variability of dissolved Mn and Zn in the Seine Estuary and chemical speciation of these metals in suspended matter. Water Research, 26, 1359–1378.

    Article  CAS  Google Scholar 

  • Carlton, D., Rust, S. W., & Sinnott, L. (2007). Application of statistical modeling to optimize a coastal water qulity monitoring program. Environmental Monitoring and Assessment, 132(1–3), 505–522.

    Google Scholar 

  • Chester, R., & Hughes, R. M. (1967). A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediment. Chemical Geology, 2, 249–262.

    Article  CAS  Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters (3rd ed., p. 436). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Forstner, U., & Wittmann, G. T. W. (1981). Metal pollution in aquatic environment. Berlin: Springer.

    Book  Google Scholar 

  • Gonzalez, A. E., Rodriguez, M. T., Sanchez, J. C. J., Espinosa, A. J. F., & De La Rosa, F. J. B. (2000). Assessment of metals in sediments in a tributary of Guadalquivir river (Spain). Heavy metal partitioning and relation between the water and sediment system. Water, Air, and Soil Pollution, 121(1–4), 11–29.

    Article  CAS  Google Scholar 

  • Horowitz, A. J., Meybeck, M., Idlafkih, Z., & Biger, F. (1999). Variations in trace element geochemistry in the Seine river basin based on floodplain deposits and bed sediments. Hydrological Processes, 13, 1329–1340.

    Article  Google Scholar 

  • Horsfall, M., & Spiff, A. I. (2002). Distribution and partitioning of trace metals in sediments of the lower reaches of the new Carlabar river, port Harcourt, Nigeria. Environmental Monitoring and Assessment, 78, 309–326.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Sharma, C. K. (2001). Distribution of trace metals in the Hindon river system, India. Journal of Hydrology, 253, 81–90.

    Article  CAS  Google Scholar 

  • Karbassi, A. R., Nouri, J., & Ayaz, G. O. (2007). Flocculation of trace metals during mixing of Talar river water with Caspian seawater. International Journal of Environmental Research, 1(1), 66–73.

    CAS  Google Scholar 

  • Karbassi, A. R., Monavari, S. M., Nabi Bidhendi, Gh. R., Nouri, J., & Nematpour, K. (2008). Metal pollution assessment of sediment and water in the Shur River. Environmental Monitoring and Assessment, 147, 107–116.

    Article  CAS  Google Scholar 

  • Klavins, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2000). Heavy metals in river of Lativa. Science of the Total Environment, 262, 175–183.

    Article  CAS  Google Scholar 

  • Li, Y., Yu, Z., Song, X., & Mu, Q. (2006). Trace metal concentrations in suspended particles, sediments and clams from Jiaozhou Bay of China. Environmental Monitoring and Assessment, 121, 491–501.

    Article  CAS  Google Scholar 

  • Matthies, M., Berlekamp, J., Lautenbach, S., Graf, N., & Reimer, S. (2006). System analysis of water quality management for the Elbe river basin. Environmental Modeling & Software, 21, 1309–1318.

    Article  Google Scholar 

  • Mehrdadi, N., Nabi Bidhendi, G. R., Nasrabadi, T., Hoveidi, H., Amjadi, M., & Shojaee, M. A. (2009). Monitoring the arsenic concentration in groundwater resources, case study: Ghezel ozan Water Basin, Kurdistan, Iran. Asian Journal of Chemistry, 21(1), 446–450.

    CAS  Google Scholar 

  • Merian, E. (Ed.). (1991). Metals and their compounds in the environment: Occurrence, analysis and biological relevance (p. 1438). Weinheim: VCH.

    Google Scholar 

  • Nabi Bidhendi, G. R., Karbassi, A. R., Nasrabadi, T., & Hoveidi, H. (2007). Influence of copper mine on surface water quality. International Journal of Environmental Science and Technology, 4(1), 85–91.

    Google Scholar 

  • Nasrabadi, T., Nabi Bidhendi, G. R., Karbassi, A. R., Hoveidi, H., Nasrabadi, I., Pezeshk, H., et al. (2009). Influence of Sungun copper mine on groundwater quality, NW Iran. Environmental Geology, 58, 693–700.

    Article  CAS  Google Scholar 

  • Nasrabadi, T., Nabi Bidhendi, G. R., Karbassi, A. R., & Mehrdadi, N. (2010a). Partitioning of metals in sediments of the Haraz River (Southern Caspian Sea basin), 2010. Environmental Earth Sciences, 59, 1111–1117.

    Article  CAS  Google Scholar 

  • Nasrabadi, T., Nabi Bidhendi, G. R., Karbassi, A. R., & Mehrdadi, N. (2010b). Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environmental Monitoring and Assessment, 171(1-4), 395–410.

    Article  CAS  Google Scholar 

  • Otto, M. (1998). Multivariate methods. In R. Kellner, J. M. Mermet, M. Otto, & H. M. Widmer (Eds.), Analytical chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  • Pardo, R., Barrado, E., Perez, L., & Vega, M. (1990). Determination and association of heavy metals in sediments of the Pisucrga, river. Water Research, 24(3), 373–379.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Rhhudy, K. B., Koening, R., & Vazquez, F. G. (1999). Metals in sediments of the upper Languna Madra. Marine Pollution Bulletin, 38(12), 1221–1226.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modeling & Software, 22, 464–475.

    Article  Google Scholar 

  • Singh, M. (2001). Heavy metal pollution in freshly deposited sediments of the Yamuna River (the Ganga river tributary): A case study from Delhi and Agra urban centers India. Environmental Geology, 40(6), 664–671.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: A case study. Analytica Chimica Acta, 538, 355–374.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., Gupta, V. K., & Anupam Mohan, D. (1994). Status of some toxic heavy metal ions in the upper reaches of river Gnages, Indian. Journal of Chemistry Society, 71, 29–34.

    CAS  Google Scholar 

  • Stamatis, N., Kamidis, N., & Sylaios, G. (2006). Sediment and suspended matter lead contamination in the gulf of Kavala, Greece. Environmental Monitoring and Assessment, 115, 433–449.

    Article  CAS  Google Scholar 

  • Taghinia, A., Basavarajappa, H. T., & Qaid Saeed, A. M. (2010). Heavy metal pollution of Kabini river sediments contamination through aquatic and solid food chain, Nanjangud, Mysore, Karnataka. International Journal of Environmental Research, 4(4), 629–636.

    Google Scholar 

  • Tessier, A., Campell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of partition of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of Earth’s crust. Bulletin of the Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • USEPA. (1997). Volunteer stream monitoring: A methods manual for water quality monitoring (p. 177). USEPA: Chicago.

    Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592.

    Article  CAS  Google Scholar 

  • Yu, K. Y., Tasi, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(7), 4086–4094.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nasehi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasehi, F., Hassani, A.H., Monavvari, M. et al. Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River. Environ Monit Assess 185, 197–203 (2013). https://doi.org/10.1007/s10661-012-2543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2543-y

Keywords

Navigation