Skip to main content

Advertisement

Log in

Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandrova, M. L., & Bochev, P. G. (2005). Oxidative stress during the chronic phase of stroke. Free Radical Biology & Medicine, 39, 297–316.

    Article  CAS  Google Scholar 

  • Al-Mutairi, N., Bufarsan, A., & Al-Rukaibi, F. (2008). Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere, 74(1), 142–148.

    Article  CAS  Google Scholar 

  • Baker, J. M. (1970). The effects of oils on plants. Environment and Pollution, 1(1), 27–44.

    Article  CAS  Google Scholar 

  • Banks, M. K., Mallede, H., & Rathbone, K. (2003). Rhizosphere microbial characterization in petroleum-contaminated soil. Soil and Sediment Contamination, 12, 371–385.

    Article  Google Scholar 

  • Black, C. A., Evan, D. D., & American Society of Agronomy. (1965). Methods of soil analysis. Agronomy, 9(2), 917–918.

    Google Scholar 

  • CEAEQ (Centre d’Expertise en Analyse Environnementale du Québec). (2003). Inhibition de la germination et de la croissance chez les semences de végétaux, MA.500-GCR 1.0. Québec: Ministère de l’Environnement du Québec.

    Google Scholar 

  • Cermak, J. H., Stephenson, G. L., Birkholz, D., Wang, Z., & Dixon, D. G. (2010). Toxicity of petroleum hydrocarbon distillates to soil organisms. Environmental Toxicology and Chemistry, 29(12), 2685–2694.

    Article  CAS  Google Scholar 

  • Chaineau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted soil: biodegradation, Leaching and Toxicity Assessments. Water, Air, and Soil Pollution, 144, 419–440.

    Article  CAS  Google Scholar 

  • Dewis, J. and Freitas F. (1984) Physical and chemical methods of soil and water analysis. FAO Soil Bulletin 10. Rome: FAOUN-Food and Agriculture Organization of the United Nations

  • Dorn, P. B., & Salanitro, J. P. (2000). Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere, 40, 419–426.

    Article  CAS  Google Scholar 

  • Ekundayo, E. O., Emede, T. O., & Osayande, D. I. (2001). Effects of crude oil spillage on growth and yield of maize (Zea mays L.) in soils of Midwestern Nigeria. Plant Foods for Human Nutrition, 56(4), 313–324.

    Article  CAS  Google Scholar 

  • Haanstra, L., Doelman, P., & Oude Voshaar, J. H. (1985). The use of sigmoidal dose response curves in soil ecotoxicological research. Plant and Soil, 84, 293–297.

    Article  CAS  Google Scholar 

  • Hanna, S. H. S., & Weaver, R. W. (2002). Earthworm survival in oil contaminated soil. Plant and Soil, 240(1), 127–132.

    Article  Google Scholar 

  • Heitkamp, M. A., Franklin, W., & Cerniglia, C. E. (1988). Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Applied and Environmental Microbiology, 54, 2549–2555.

    CAS  Google Scholar 

  • Hünd-Rinke, K., Lindemann, M., & Simon, M. (2005). Experiences with novel approaches in earthworm testing alternatives. Journal of Soils and Sediments, 5, 233–239.

    Article  Google Scholar 

  • IARC (International Agency for Research on Cancer) Working Group. (2000). Some Industrial Chemicals. In (Vol. 77IARC) Monographs on the Evaluation of the Carcinogenic Risk of Some Industrial Chemicals to Humans, Lyon, France, 15–22 February 2000.

  • ISO 17512-2 (2005b) Soil quality—avoidance test for testing the quality of soils and effects of chemicals on behavior. Part 2: Test with collembolan (Folsomia candida), Geneva: International organization for standardization

  • ISO/17512-1 (2008a) Soil quality: avoidance test for determining the quality of soils and effects of chemicals on behavior. Part 1: Test with earthworms (Eisenia foetida and Eisenia andrei), International organization for standardization, Geneva, Switzerland

  • Kyung-Hwa, B., Hee-Sik, K., Hee-Mock, O., Byung-Dae, Y., Jaisoo, K., & In-Sook, L. (2004). Effect of crude oil, oil components, and bioremediation on plant growth. Journal of Environmental Science and Health, Part A, 39(9), 2465–2472.

    Article  Google Scholar 

  • McElroy, A. E., Farrington, J. W., & Teal, J. M. (1989). Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In U. Varanasi (Ed.), Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment (pp. 1–39). Boca Raton: CRC Press.

    Google Scholar 

  • Mortelmans, K., Haworth, S., Lawlor, T., Speck, W., Tainer, B., & Zeiger, E. (1986). Salmonella mutagenicity test: II. Results from testing of 270 chemicals. Environmental Mutagenesis, 8(Supll 7), 1–119.

    Article  CAS  Google Scholar 

  • Natal-Da-Luz, T., Amorim, M. J. B., Römbke, J., & Sousa, J. P. (2008). Avoidance tests with earthworms and springtails: defining the minimum exposure time to observe a significant response. Ecotoxicology and Environment Safety, 71(2), 545–551.

    Article  CAS  Google Scholar 

  • OECD 207 (1984) Earthworms acute toxicity tests. Guideline for testing of chemicals. Organization for Economic Co-operation and Development

  • Ogboghodo, I. A., Iruaga, E. K., Osemwota, I. O., & Chokor, J. U. (2004). An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types—Forcados Light and Escravos Light. Environmental Monitoring and Assessment, 96, 143–152.

    Article  CAS  Google Scholar 

  • Quiñones-Aguilar, E. E., Ferrera-Cerrato, R., Gavi-Reyes, F., Fernandez-Linares, L., Rodriguez-Vazquez, R., & Alarcón, A. (2003). Emergence and growth of maize in a crude oil polluted soil. Agrociencia, 37, 585–594.

    Google Scholar 

  • Römbke, J., Jänsch, S., Schallnas, H.-J. and Terytze, K. (2005) Zusammenstellung und statistische Bearbeitung vorhandener Daten zur Wirkung von ausgewahlten Verbindungen auf Bodenorganismen und Ableitung von Bodenwerten fur den Pfad “Boden–Bodenorganismen. Abschlussbericht zum F+E Vorhaben des Umweltbundesamtes, FKZ 202 73 266.

  • Schäefer, M., & Filser, J. (2007). The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Applied Soil Ecology, 36, 53–62.

    Article  Google Scholar 

  • Shin, K. H., Jung, H. Y., Chang, P. C., Choi, H. C., & Kim, K. W. (2005). Earthworm toxicity during chemical oxidation of diesel-contaminated sand. Environmental Toxicology and Chemistry, 24(8), 1924–1929.

    Article  CAS  Google Scholar 

  • Siddiqui, S., Adams, W. A., & Schollion, J. (2001). The phytotoxicity and degradation of diesel hydrocarbons in soil. Journal of Plant Nutrition and Soil Science, 164, 631–635.

    Article  CAS  Google Scholar 

  • SPAC (1998) Soil and Plant Analysis Council. In K. Yash (eds), Handbook on Reference Methods for Soil Analysis. New York: Taylor & Francis.

  • Tang, J. C., Wang, M., Wang, F., Sun, Q., & Zhou, Q. X. (2011). Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences, 23(5), 845–851.

    Article  CAS  Google Scholar 

  • Villalobos, M., Avila-Forcada, A. P., & Gutierrez-Ruiz, M. E. (2008). An improved gravimetric method to determine total petroleum hydrocarbons in contaminated soils. Water, Air, and Soil Pollution, 194(1-4), 151–161. doi:10.1007/s11270-008-9704-1.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, Z. Z., Su, Y. M., He, W., He, F., & Song, H. G. (2008). Phytoremediation of petroleum polluted soil. Petrological Sciences, 5(2), 167–17.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Prof. Chris Carr from the University of California for English proofreading. The authors acknowledge the help and support of Dr. Adam Scheffczyk and Dr. Jörg Römbke from ECT Oekotoxikologie GmbH. Flörsheim; Germany

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Hentati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentati, O., Lachhab, R., Ayadi, M. et al. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185, 2989–2998 (2013). https://doi.org/10.1007/s10661-012-2766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2766-y

Keywords

Navigation