Skip to main content
Log in

Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called “susceptibility to groundwater quality degradation”. The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a “manual” selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albinet, M., & Margat, J. (1970). Cartographie de la vulnérabilité à la pollution des nappes d’eau souterraine. Bull. du BRGM (deuxième série), Section III, n.4: 13–22.

  • Aller, L., Bennet, T., Lehr, JH., Petty, RJ., & Hackett G. (1987). DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. Prepared for U.S.EPA, Office of Research and Development, Ada, OK. EPA-600/2-87-035.

  • Angelone, M., Cremisini, C., Piscopo, V., Proposito, M., & Spaziani, F. (2009). Influence of hydrostratigraphy and structural setting on the arsenic occurrence in groundwater of the Cimino–Vico volcanic area (central Italy). Hydrogeology Journal, 17, 901–914.

    Article  CAS  Google Scholar 

  • Arnoldus-Huyzendveld, A. (2003). I suoli di Roma. (The soils of Rome). 1:50,000 scale. Comune di Roma, Dipartimento X, U.O. Sviluppo sostenibile, Stampa D.E.I.

  • Baalousha, H. (2010). Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agriculture Water Management, 97, 240–246.

    Article  Google Scholar 

  • Baiocchi, A., Dragoni, W., Lotti, F., Luzzi, G., & Piscopo, V. (2006). Outline of the hydrogeology of the Cimino and Vico volcanic area and of the interaction between groundwater and Lake Vico (Lazio Region, Central Italy). Bollettino della Societa Geologica Italiana, 125, 187–202.

    Google Scholar 

  • Basnet, B. B., Apan, A. A., & Raine, S. R. (2001). Selecting suitable sites for animal waste—application using a raster GIS. Environmental Management, 28(4), 519–531.

    Article  CAS  Google Scholar 

  • Bekesi, G., & Mc Conchie, J. (2002). The use of aquifer media characteristics to model vulnerability to contamination, Manawatu region, New Zealand. Hydrogeology Journal, 10, 322–331.

    Article  Google Scholar 

  • Boni, C., Bono, P., & Capelli, G. (1986). Schema idrogeologico dell’Italia centrale (Hydrogeological scheme of Central Italy). Memorie della Societa Geologica Italiana, 35, 991–1012.

    Google Scholar 

  • Capelli, G., Mazza, R., & Gazzetti, C. (2005). Strumenti e strategie per la tutela e l’uso compatibile della risorsa idrica nel Lazio. Gli acquiferi vulcanici. (Instruments and strategies for the protection and thE compatible use of water resources in Latium. Volcanic aquifers). Pitagora. ISBN: 8837114508. 191 p. (in Italian).

  • Civita, M. (1990). La valutazione della vulnerabilità degli acquiferi all’inquinamento. (The evaluation of aquifers vulnerability to pollution). Atti 1° Convegno Nazionale sulla Protezione e Gestione delle Acque Sotterranee. Modena, 20-22 September 1990. 39–64 p. (in Italian).

  • Daly, D., Dassargues, A., Drew, D., Dunne, S., Goldscheider, N., Neale, S., et al. (2002). Main concepts of the “European approach” to karst–groundwater–vulnerability assessment and mapping. Hydrogeology Journal, 10, 340–345.

    Article  Google Scholar 

  • Davis, B. (1996). GIS—a visual approach (1st ed.). Santa Fe: WordPress.

    Google Scholar 

  • Dawoud, M. A. (2004). Design of national groundwater quality monitoring network in Egypt. Environmental Monitoring and Assessment, 96, 99–118.

    Article  CAS  Google Scholar 

  • De Luca A., Preziosi E., Giuliano G., Mastroianni D., & Falconi F. (2004). First evaluation of the saltwater intrusion in the Tiber delta area (Rome, central Italy). Book of Synopses, Abstracts of the 18th Salt Water Intrusion Meeting, Cartagena, Spain, 13–18 June 2004, p. 34, http://www.swim-site.nl/pdf/swim18.html. Last accessed 03-04-2012.

  • Debernardi, L., De Luca, D. A., & Lasagna, M. (2008). Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environmental Geology, 55, 539–558. doi:10.1007/s00254-007-1006-1.

    Article  CAS  Google Scholar 

  • European Commission (2007). Guidance on Groundwater Monitoring, Guidance Document No. 15. Technical Report—2007. ISBN 92-79-04558-X. European Communities, Luxembourg, 2007.

  • European Communities. (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water for human consumption. Official Journal of the European Communities, L330(32–54), 5.12.1998.

    Google Scholar 

  • European Communities. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327(1–71), 22.12.2002.

    Google Scholar 

  • European Communities. (2006). Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Communities, L372(19–31), 27.12.2006.

    Google Scholar 

  • Giuliano, G., Preziosi, E., Petrangeli, A. B., Vivona, R., Patera, A., De Luca, A., et al. (2006). Integrazione fra rete di monitoraggio delle acque sotterranee e cartografia di vulnerabilità delle falde. Proposta metodologica e sperimentazione in Provincia di Roma (Integrating groundwater monitoring networks with vulnerability mapping. A methodological proposal and application to a case study in the province of Rome). Memorie Descr della Carta Geoligica d’Italiana, 73, 15–66.

    Google Scholar 

  • Gogu, R. C., & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39(6), 549–559.

    Article  CAS  Google Scholar 

  • Loaiciga, H. A., Charbeneau, R. J., Everett, L. G., Fogg, G. E., Hobbs, B. F., & Rouhani, S. (1992). Review of ground-water quality monitoring network design. Journal of Hydraulic Engineering, 118(1), 11–37.

    Article  Google Scholar 

  • Margat, J. (1968). Vulnérabilité des nappes d’eau souterraine à la pollution. Bases de la cartographie BRGM, 68 SGL 198 HYD, Orléans, France.

  • Masoumi, F., & Kerachian, R. (2010). Optimal redesign of groundwater quality monitoring networks: a case study. Environmental Monitoring and Assessment, 161, 247–257. doi:10.1007/s10661-008-0742-3.

    Article  Google Scholar 

  • Melloul, A. J., & Collin, M. (1998). A proposed index for aquifer water quality assessment: the case of Israel’s Sharon region. Journal of Environmental Management, 54, 131–142.

    Article  Google Scholar 

  • Mitchell, A. (1999). The ESRI guide to GIS analysis. Volume 1: geographic patterns & relationships. Redlands: Environmental Systems Research Institute, Inc.

  • Mogheir, Y., de Lima, J. L. M. P., & Singh, V. P. (2009). Entropy and multi-objective based approach for groundwater quality monitoring network assessment and redesign. Water Resources Management, 23, 1603–1620. doi:10.1007/s11269-008-9343-8.

    Article  Google Scholar 

  • Muhammetoglu, A., & Yardimci, A. (2006). A fuzzy logic approach to assess groundwater pollution levels below agricultural fields. Environmental Monitoring and Assessment, 118, 337–354. doi:10.1007/s10661-006-1497-3c.

    Article  CAS  Google Scholar 

  • Preziosi, E., Vivona, R., & Giuliano, G. (2005). Microinquinanti di origine naturale negli acquiferi vulcanici: un approccio integrato quantitativo e qualitativo nel Lazio settentrionale (Micropollutants of natural origin in volcanic aquifers: an integrated quantitative and qualitative approach in northern Latium). IGEA, 20, 3–14.

    Google Scholar 

  • Preziosi, E., Petrangeli, AB., De Luca, A., Vivona, R., Patera, A., Giuliano, G., & Mari, G.M. (2005b). Fitting groundwater monitoring networks to pollution risks. Proceedings of the Aquifer Vulnerability and Risk Int. Workshop, Parma, 21–23 September 2005.

  • Preziosi, E., Giuliano, G., & Vivona, R. (2010). Natural background levels and threshold values derivation for naturally As, V and F rich groundwater bodies: a methodological case study in Central Italy. Environmental Earth Sciences, 61, 885–897. doi:10.1007/s12665-009-0404-y.

    Article  CAS  Google Scholar 

  • Regione Lazio (2002). Realizzazione della carta litologica con elementi strutturali in formato digitale della Regione Lazio. (Realization of the digital lithological map with structural elements for the Latium Region, scale 1:25000), Regione Lazio e Dipartimento di Scienze della Terra dell’università di Roma 3. Roma, 2002.

  • Rentier, C., Delloye, F., Brouyère, S., & Dassargues, A. (2006). A framework for an optimised groundwater monitoring network and aggregated indicators. Environmental Geology, 50, 194–201. doi:10.1007/s00254-006-0200-x.

    Article  CAS  Google Scholar 

  • Tomlin, C. D. (1990). Geographic information system and cartography modelling. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Ventriglia, U. (1988). Idrogeologia della provincia di Roma. Vol. 1. (Hydrogeology of the Rome Province, Vol.1). A cura dell’ Amministrazione Provinciale di Roma Assessorato LL.PP. Viabilità e Trasporti. Roma, Italy.

  • Vivona, R., Preziosi, E., Madé, B., & Giuliano, G. (2007). Occurrence of minor toxic elements in volcanic-sedimentary aquifers: a case study in central Italy. Hydrogeology Journal. doi:10.1007/s10040-007-0169-x.

  • Vrba, J., & Zoporozec, A. (1994). Guidebook on mapping groundwater vulnerability—volume 16/1994 international contributions to hydrogeology. ISSN 0936-3912. ISBN 3-922705-97-9. Verlag Heinz Heise GnbH & Co KG.

  • Worrall, F., & Besien, T. (2005). The vulnerability of groundwater to pesticide contamination estimated directly from observations of presence or absence in wells. Journal of Hydrology, 303, 92–107.

    Article  CAS  Google Scholar 

  • Wu, Y. (2004). Optimal design of a groundwater monitoring network in Daqing, China. Environmental Geology, 45, 527–535. doi:10.1007/s00254-003-0907-x.

Download references

Acknowledgments

The authors are grateful to an anonymous reviewer and Dr. Chandrashekhar Bhuiyan for their useful suggestions which largely improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Preziosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preziosi, E., Petrangeli, A.B. & Giuliano, G. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design. Environ Monit Assess 185, 3759–3781 (2013). https://doi.org/10.1007/s10661-012-2826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2826-3

Keywords

Navigation