Skip to main content

Advertisement

Log in

Occurrence and sorption properties of arsenicals in marine sediments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The content of total arsenic, the inorganic forms: arsenite (As(III)) and arsenate (As(V)), the methylated forms: monomethylarsonic acid and dimethylarsinic acid (DMA), trimethylarsenic oxide, tetramethylarsenonium ion and arsenobetaine was measured in 95 sediment samples and 11 pore water samples from the Baltic Sea near the island of Bornholm at depths of up to 100 m. As(III+V) and DMA were detected in the sediment and As(III+V) was detected in the sediment pore water. Average total As concentration of 10.6 ± 7.4 mg/kg dry matter (DM) in the sediment corresponds to previously reported values in the Baltic Sea and other parts of the world. Existing data for on-site measurements of sorption coefficients (Kd) of arsenicals in marine and freshwater sediments show large variability from <1 to >1,000 L/kg. In this work, calculated sorption coefficients (Kd and Koc) for As(III+V) showed significant correlation with depth, dissolved oxygen (DO), salinity and sediment classification; for depths <70 m, salinity <11 %, DO >9 mg/L and sand/silt/clay sediments the Kd was 118 ± 76 L/kg DM and for depths >70 m, salinity >11 %, DO < 9 mg/L and muddy sediments the Kd was 513 ± 233 L/kg DM. The authors recommend using the found Kd value for arsenic in marine sediments when conditions are similar to the Baltic Sea. At locations with significant anthropogenic point sources or where the local geology contains volcanic rock and sulphide mineral deposits, there may be significantly elevated arsenic concentrations, and it is recommended to determine on-site Kd values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • BEK nr 1449 af 11/12/2007. Bekendtgørelse om vandkvalitet og tilsyn med vandforsyningsanlæg (in Danish).

  • Bolton, M., & Beckie, R. (2011). Aqueous and mineralogical analysis of arsenic in the reduced, circumneutral groundwater and sediments of the Lower Fraser River Delta, British Columbia, Canada. Applied Geochemistry, 26(4), 458–469.

    Article  CAS  Google Scholar 

  • Borah, D., Satokawa, S., Kato, S., & Kojima, T. (2009). Sorption of As(V) from aqueous solution using acid modified carbon black. Journal of Hazardous Materials, 162(2–3), 1269–1277.

    Article  CAS  Google Scholar 

  • Bossi, R., Krongaard, T., & Christoffersen, C. (2008). Analysis of arsenic compounds in sediment samples and sediment pore water samples from the Baltic Sea. NERI Technical Report.

  • Carman, R., & Rahm, L. (1997). Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic Proper. Journal of Sea Research, 37, 25–47.

    Article  CAS  Google Scholar 

  • Cornett, J., Chant, L., & Risto, B. (1992). Arsenic transport between water and sediments. Hydrobiologia, 235–236, 533–544.

    Article  Google Scholar 

  • Currell, M., Cartwright, I., Raveggi, M., & Han, D. M. (2011). Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China. Applied Geochemistry, 26(4), 540–552.

    Article  CAS  Google Scholar 

  • De Brouwere, K., Smolders, E., & Merckx, R. (2004). Soil properties affecting solid-liquid distribution of As(V) in soils. European Journal of Soil Science, 55(1), 165–173.

    Article  CAS  Google Scholar 

  • DiToro, D. M. (1991). Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and Chemistry, 10, 1541–1583.

    Article  CAS  Google Scholar 

  • DS 204 (1980). Determination of total residue and total fixed residue in water, sludge and sediment. Danish Standard 4 pages (in Danish).

  • Emelyanov, E. M. (1996). Chemical components and elements in the suspended matter and Sediments of the Western Baltic. Baltica, 9, 5–15.

    Google Scholar 

  • Feldmann, J., Lai, V. W.-M., Cullen, W. R., Ma, M., Lu, X., & Le, X. C. (1999). Sample preparation and storage can change arsenic speciation in human urine. Clinical Chemistry, 45(11), 1988–1997.

    CAS  Google Scholar 

  • Forster, S., Bobertz, B., & Bohling, B. (2003). Permeability of sands in the coastal areas of the southern Baltic Sea: mapping a grain-size related sediment property. Aquatic Geochemistry, 9, 171–190.

    Article  Google Scholar 

  • Gao, S., Goldberg, S., Herbel, M. J., Chalmers, A. T., Fujii, R., & Tanji, K. K. (2006). Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California. Chemical Geology, 228(1–3), 33–43.

    Article  CAS  Google Scholar 

  • Garnaga, G., Wyse, E., Azemard, S., Stanekvicius, A., & de Mora, S. (2006). Arsenic in sediments from the Southeastern Baltic Sea. Environmental Pollution, 144, 855–861.

    Article  CAS  Google Scholar 

  • Hedges, J. I., & Stern, J. H. (1984). Carbon and nitrogen determinations of carbonate-containing solids. Limnology and Oceanography, 29(3), 657–663.

    Article  CAS  Google Scholar 

  • IPCS. (2001). International Programme on Chemical Safety (IPCS), Environmental Health Criteria 224, Arsenic and arsenic compounds. Geneva: World Health Organization.

    Google Scholar 

  • Jung, H. B., Charette, M. A., & Zheng, Y. (2009). Field, laboratory and modeling study of reactive transport of groundwater arsenic in a coastal aquifer. Environmental Science & Technology, 43(14), 5333–5338.

    Article  CAS  Google Scholar 

  • Kazemi, S. M., & Hosseini, S. M. (2011). Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea. Expert Systems with Applications, 38(3), 1632–1649.

    Article  Google Scholar 

  • Kohusova, K., Havel, L., Vlasak, P., & Tonika, J. (2011). A long-term survey of heavy metals and specific organic compounds in biofilms, sediments and surface water in a heavily affected river in the Czech Republic. Environmental Monitoring And Assessment, 174(1–4), 555–572.

    Article  CAS  Google Scholar 

  • Kristiansen, S. M., Nørnberg, P., & Ramsay, L. (2005). Arsenic in Danish drinking water—an underestimated trace element (Arsen i dansk drikkevand – et undervurderet sporstof in danish). Geologisk nyt, 4, 22–24.

    Google Scholar 

  • Li, C. L., Kang, S. C., Zhang, Q. G., Gao, S. P., & Sharma, C. M. (2011). Heavy metals in sediments of the yarlung tsangbo and its connection with the arsenic problem in the Ganges-Brahmaputra Basin. Environmental Geochemistry and Health, 33(1), 23–32.

    Article  CAS  Google Scholar 

  • Lin, Z., & Puls, R. W. (2000). Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology, 39(7), 753–759.

    Article  CAS  Google Scholar 

  • Liu, A., & Gonzales, R. D. (1999). Adsorption/desorption in a system consisting of humic acid, heavy metals and clay minerals. Journal of Colloid and Interface Science, 218, 225–232.

    Article  CAS  Google Scholar 

  • Liu, G. L., & Cai, Y. (2010). Complexation of arsenite with dissolved organic matter conditional distribution coefficients and apparent constants. Chemosphere, 81(7), 890–896.

    Article  CAS  Google Scholar 

  • Maiti, A., Basu, J. K., & De, S. (2010). Removal of Arsenic from synthetic and natural groundwater using acid-activated laterite. Environmental Progress & Sustainable Energy, 29(4), 457–470.

    Article  CAS  Google Scholar 

  • Maji, S. K., Pal, A., Pal, T., & Adak, A. (2007). Sorption kinetics of arsenic on laterite soil in aqueous medium. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 42(7), 989–996.

    Article  CAS  Google Scholar 

  • Mamisahebei, S., Khaniki, G. R. J., Torabian, A., Nasseri, S., & Naddafi, K. (2007). Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. Iranian Journal of Environmental Health Science & Engineering, 4(2), 85–92.

    CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1996). Modelling arsenate competitive adsorption on kaolinite, montmoriltonite and illite. Clays and Clay Minerals, 44(5), 609–623.

    Article  CAS  Google Scholar 

  • Mariner, P. E., Holzmer, F. J., Jackson, R. E., Meinardus, H. W., & Wolf, F. G. (1996). Effects of high pH on arsenic mobility in a shallow sandy aquifer and on aquifer permeability along the adjacent shoreline, Commencement Bay Superfund Site, Tacoma, Washington. Environmental Science & Technology, 30, 1645–1651.

    Article  CAS  Google Scholar 

  • Marshall, S. J., House, W. A., Russell, N. J., & White, G. F. (1998). Comparative adsorption of natural and commercially available humic acids to river sediments. Colloid Surfaces A: Physicochem Eng Aspects, 144, 127–137.

    Article  CAS  Google Scholar 

  • Masson, M., Schafer, J., Blanc, G., Dabrin, A., Castelle, S., & Lavaux, G. (2009). Behaviour of arsenic and antimony in the surface freshwater reaches of a highly turbid estuary, the Gironde Estuary, France. Applied Geochemistry, 24(9), 1747–1756.

    Article  CAS  Google Scholar 

  • Mok, W. M., & Wai, C. M. (1990). Distribution and mobilization of arsenic and antimony species in the Coeur D’Alene River, Idaho. Environmental Science & Technology, 24, 102–108.

    Article  CAS  Google Scholar 

  • Montperrus, M., Bohari, Y., Bueno, M., Astruc, A., & Astruc, M. (2005). Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high-performance liquid chromatography-hydride generation-atomic fluorescencespectroscopy. Applied Organometallic Chemistry, 16, 347–354.

    Article  CAS  Google Scholar 

  • Oke, I. A., Olarinoye, N. O., & Adewusi, S. R. A. (2008). Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell. Journal of the International Adsorption Society, 14(1), 73–83.

    Article  CAS  Google Scholar 

  • Omstedt, A., Edman, M., Anderson, L. G., & Laudon, H. (2010). Factors influencing the acid–base (pH) balance in the Baltic Sea: a sensitivity analysis. Tellus B, 62(4), 280–295. doi:10.1111/j.1600-0889.2010.00463.x.

    Article  CAS  Google Scholar 

  • Pazi, I. (2011). Assessment of heavy metal contamination in Candarli Gulf Sediment, Eastern Aegean Sea. Environmental Monitoring and Assessment, 174(1–4), 199–208.

    Article  CAS  Google Scholar 

  • Pearcy, C. A., Chevis, D. A., Haug, T. J., Jeffries, H. A., Yang, N. F., Tang, J. W., Grimm, D. A., & Johannesson, K. H. (2011). Evidence of microbially mediated arsenic mobilization from sediments of the Aquia Aquifer, Maryland, USA. Applied Geochemistry, 26(4), 575–586.

    Article  CAS  Google Scholar 

  • Pongratz, R. (1998). Arsenic speciation in environmental samples of contaminated soil. Science of the Total Environment, 224, 133–141.

    Article  CAS  Google Scholar 

  • Popp, M., Koellensperger, G., Stingeder, G., & Hann, S. (2008). Novel approach for determination of trace metals bound to suspended solids in surface water samples by inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Journal of Analytical Atomic Spectrometry, 23(1), 111–118.

    Article  CAS  Google Scholar 

  • Ramboll O&G/Nord Stream AG (2008). Technical specifications: additional environmental field investigations S – Route South of Bornholm. 07-04-2008.

  • Ramboll O&G/Nord Stream AG (2009). Offshore pipelines through the Baltic Sea. Environmental impact assessment. Danish Section (based on Act no. 548 of 06/06/2007, and Order no. 884 of 21/09/2000).

  • Reczynski, W., Posmyk, G., & Nowak, K. (2004). Dynamics of arsenic-containing compounds’ sorption on sediments. Journal of Soils and Sediments, 4(2), 95–100.

    Article  CAS  Google Scholar 

  • Ribeiro, A. P., Figueira, R. C. L., Martins, C. C., Silva, C. R. A., Franca, E. J., Bicego, M. C., Mahiques, M. M., & Montone, R. C. (2011). Arsenic and trace metal contents in sediment profiles from the Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 62(1), 192–196.

    Article  CAS  Google Scholar 

  • Rivero-Huguet, M., & Marshall, W. D. (2011). Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated soils. Chemosphere, 83(5), 668–673.

    Article  CAS  Google Scholar 

  • Root, R. A., Dixit, S., Campbell, K. M., Jew, A. D., Hering, J. G., & O’Day, P. A. (2007). Arsenic sequestration by sorption processes in high-iron sediments. Geochemica Et Cosmochimica Acta, 71(23), 5782–5803.

    Article  CAS  Google Scholar 

  • Sahabi, D. M., Takeda, M., Suzuki, I., & Koizumi, J. (2009). Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics. Journal of Hazardous Materials, 168(2–3), 1310–1318.

    Article  CAS  Google Scholar 

  • Sanderson, H., Fauser, P., Thomsen, M., & Sørensen, P. B. (2008). Screening level fish community risk assessment of chemical warfare agents in the Baltic Sea. Journal of Hazardous Materials, 154, 846–857.

    Article  CAS  Google Scholar 

  • Schnoor, J. L. (1996). Environmental modeling—fate and transport of pollutants in water, air and soil. A Wiley-Interscience Series of Texts and Monographs. John Wiley & Sons, Inc.

  • SFT (1999). Risikovurdering av forurenset grunn. Statens Forurensningstilsyn, Veiledning 99:01A.

  • Sharif, M. S. U., Davis, R. K., Steele, K. F., Kim, B., Hays, P. D., Kresse, T. M., & Fazio, J. A. (2011). Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley Alluvial Aquifer, Arkansas, USA. Applied Geochemistry, 26(4), 496–504.

    Article  CAS  Google Scholar 

  • Sheppard, S. C. (2011). Robust prediction of Kd from soil properties for environmental assessment. Human and Ecological Risk Assessment, 17, 263–279.

    Article  CAS  Google Scholar 

  • Sloth, J. J., Larsen, E. H., & Julshamn, K. (2003). Determination of organoarsenic species in marine samples using gradient elution cation exchange HPLC-ICPMS. Journal of Analytical Atomic Spectrometry, 18, 452–459.

    Article  CAS  Google Scholar 

  • Sloth, J. J., Larsen, E. H., & Julshamn, K. (2004). Selective arsenic speciation analysis of human urine reference materials using gradient elution ion-exchange HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 19, 973–978.

    Article  CAS  Google Scholar 

  • Sloth, J. J., Larsen, E. H., & Julshamn, K. (2005). Survey of inorganic arsenic in marine animals and marine certified reference materials by anion-exchange HPLC-ICPMS. Journal of Agricultural and Food Chemistry, 16, 6011–6018.

    Article  CAS  Google Scholar 

  • Stoeppler, M., Burow, M., Backhaus, F., Schramm, W., & Nürnberg, H. W. (1986). Arsenic in seawater and brown algae of the Baltic and the North Sea. Marine Chemistry, 18(2–4), 321–334.

    Article  CAS  Google Scholar 

  • Sun, Y., Chen, B., Huang, H., Ma, Z., & Yu, W. (2011). Heavy metals contamination and potential ecological risk in the sediment of the seas around South Subtropical Islands, China. China Environmental Science, 31(1), 123–130.

    CAS  Google Scholar 

  • Tauhid-Ur-Rahman, M., Mano, A., & Ischibashi, Y. (2011). Exploring sustainability of aquifers based on predictive modeling of sorption characteristics of arsenic enriched holocene sediments in Bangladesh. Applied Geochemistry, 26(4), 636–647.

    Article  CAS  Google Scholar 

  • Uddin, A., Shamsadduha, M., Saunders, J. A., Lee, M. K., Ahmed, K. M., & Chowdhury, M. T. (2011). Mineralogical profiling of alluvial sediments from arsenic-affected Ganges-Brahmaputra floodplain in Central Bangladesh. Applied Geochemistry, 26(4), 470–483.

    Article  CAS  Google Scholar 

  • US EPA (1994). Method 6020. In Environmental protection agency, Washington DC.

  • US EPA (2004). Understanding variation in partition coefficient, Kd, values, volume III: review of geochemistry and available Kd values for Americium, arsenic, curium, iodine, neptunium, radium and technetium. United States Environmental Protection Agency. Office of Air and Radiation. Interagency Agreement No. DW89937220-01-7.

  • USGS (2011). United States Geological Survey. http://ga.water.usgs.gov/edu/drinkseawater.html. Accessed 8 Sept 2011.

  • Wen, X., Du, Q., & Tang, H. (1998). Surface complexation model for the heavy metal adsorption on natural sediment. Environmental Science & Technology, 32, 870–875.

    Article  CAS  Google Scholar 

  • WHO (2008). Guidelines for drinking-water quality, chapter 5: drinking water guidelines and standards. Worlds Health Organisation, Geneva Switzerland http://www.who.int/water_sanitation_health/dwq/arsenicun5.pdf.

  • Xu, H., Allard, B., & Grimvall, A. (1991). Effects of acidification and natural organic materials on the mobility of arsenic in environment. Water, Air, and Soil Pollution, 57–58, 269–278.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Nord Stream AG for the use of data. Further information can be found at http://www.nord-stream.com/. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 266445 for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Fauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauser, P., Sanderson, H., Hedegaard, R.V. et al. Occurrence and sorption properties of arsenicals in marine sediments. Environ Monit Assess 185, 4679–4691 (2013). https://doi.org/10.1007/s10661-012-2896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2896-2

Keywords

Navigation