Skip to main content

Advertisement

Log in

Decision support model for assessing aquifer pollution hazard and prioritizing groundwater resources management in the wet Pampa plain, Argentina

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km2 encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam–loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aller, L.T., Bennett, H. J. R., Lehr, R., Petty, J., Hackett, G. (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using geo-hydrogeologic settings. US Environmental Protection Agency Report, EPA600/2-EP87/036.

  • Auge, M. (2004). Vulnerabilidad de Acuíferos: Conceptos y Métodos. E book: 1–38. RedIRIS. Red Académica y Científica de España en Internet. http://tierra.rediris.es/hidrored/ebooks/vulnerabilidad.html. Accessed 10 March 2007.

  • Brett, A. B. (2003). Physical environmental modeling, visualization and query for supporting landscape planning decisions. Landscape and Urban Planning, 65, 237–259.

    Article  Google Scholar 

  • Chowdary, V. M., Rao, N. H., & Sarma, P. B. S. (2005). Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agricultural Water Management, 75(3), 194–225.

    Article  Google Scholar 

  • Connell, L. D., & Daele, G. V. D. (2003). A quantitative approach to aquifer vulnerability mapping. Journal of Hydrology, 276(71), 88.

    Google Scholar 

  • Dalla Salda, L., Iñiguez, R.M. (1979) “La Tinta”, Precambrico y Paleozoico de Buenos Aires [La Tinta, Precambrian and Paleozoic in Buenos Aires]. VII Congr Geol Arg I, Neuquén, Argentina, pp. 539–550

  • de Kok, J. L., Kofalk, S., Berlekamp, J., Hahn, B., & Wind, H. (2009). From design to application of a decision-support system for integrated river-basin management. Water Resources Management, 23, 1781–1811.

    Article  Google Scholar 

  • Dixon, B. (2005). Groundwater vulnerability mapping: a GIS and fuzzy rule based integrated tool. Applied Geography, 25, 327–347.

    Article  Google Scholar 

  • Foster, S. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In W. Van Duijvenbooden & H. G. Van Waegeningh (Eds.), Vulnerability of soil and groundwater to pollutants (pp. 69–86). The Hague: Committee on Hydrological Research.

    Google Scholar 

  • Fredericks, J. W., Labadie, J., & Altenhofen, M. (1998). Decision support system for conjunctive stream-aquifer management. Journal of Water Resources Planning and Management, 124(2), 69–78.

    Article  Google Scholar 

  • Hamerlinck, J.D., Arneson, C.S. (1998). Wyoming ground water vulnerability assessment handbook, Vol. 2. Assessing ground water vulnerability to pesticides: University of Wyoming, Laramie, Spatial Data and Visualization Center Publication SDVC 98-01-2, variable pagination.

  • InfoHarvest, inc. (1997). Criterium DecisionPlus (CDP). http://www.InfoHarvest.com. Accessed 15 March 2011.

  • INTA (Instituto Nacional de Tecnología Agropecuaria) (1989). Carta de Suelos de la República Argentina (1:50.000). Proyecto PNUD ARG 85/019. Secretaría de Agricultura, Ganadería y Pesca-INTA.

  • Iribarne, O. (2001). Reserva de Biosfera Mar Chiquita: Características físicas, biológicas y ecológicas (p. 320). Argentina: Editorial Martín.

    Google Scholar 

  • Janssen, R., Goosen, H., Verhoeven, M. L., Verhoeven, J. T. A., Omtzigt, A. Q. A., & Maltby, E. (2005). Decision support for integrated wetland management. Environmental Modelling and Software, 20, 215–229.

    Article  Google Scholar 

  • Jenks, G. (1977) Optimal data classification for choropleth maps. Department of Geography occasional paper no. 2, University of Kansas, Lawrence, Kansas.

  • Jenks, G., & Caspall, F. (1971). Error on choropleth maps: definition, measurement, and reduction. Annals of the Association of American Geographers, 61(2), 217–244.

    Article  Google Scholar 

  • Kamenetzky, R. (1982). The relationship between the analytical hierarchy process and the additive value function. Decision Sciences, 13, 702–716.

    Article  Google Scholar 

  • Lam, D. C. L., Mayfield, C. I., Swayne, D. A., & Hopkins, K. (1994). A prototype information system for watershed management and planning. Journal of Biological System, 2(4), 499–517.

    Article  Google Scholar 

  • Lima, M. L., Zelaya, K., & Massone, H. (2011). Groundwater vulnerability assessment combining the drastic and Dyna-Clue Model in the Argentine pampas. Environmental Management, 47(5), 828–839.

    Article  Google Scholar 

  • Lima, M.L., Escobar, J.F., Massone, H., Martínez, D. (2012). Exploratory geospatial modeling in lowland basins: application case in the Dulce Creek basin, Buenos Aires, Argentina. Water Technology and Sciences (in Spanish), Vol. III, No. 2. April−June, pp. 51–65

  • Lowe, M., Butler, M. (2003). Ground water sensitivity and vulnerability to pesticides, Heber and Round Vallyes, Wasatch County, Utah. Miscellaneous Publication 03–5, Utah Geological Survey.

  • MacMynowski, D. P. (2007). Across space and time: social responses to large scale biophysical systems. Environmental Management, 39(6), 831–842.

    Article  Google Scholar 

  • Marchese, H., & Di Paola, E. (1975). Reinterpretación estratigráfica de la perforación Punta Mogotes N°1, Provincia de Buenos Aires [Stratigraphic interpretation of the well in Punta Mogotes N°1, Province of Buenos Aires]. Revista de la Asociación Geológica Argentina, 30(1), 17–44.

    Google Scholar 

  • Marttunen, M., & Vehanen, T. (2004). Toward adaptive management: the impacts of different management strategies on fish stocks and fisheries in a large regulated lake. Environmental Management, 33(6), 840–854.

    Article  Google Scholar 

  • Massone, H., Tomas, M., Farenga, M. (2005). Una aproximación geológica a la planificación de usos del territorio utilizando técnicas SIG. Balcarce (Argentina) como estudio de caso. XVI Congreso Geológico Argentino, Actas V. La Plata, Argentina. ISBN 987-595-001-9

  • Murray, A., & Shyy, T. (2000). Integrating attribute and space characteristics in choropleth display and spatial data mining. International Journal of Geographical Information Science, 14(7), 649–667.

    Article  Google Scholar 

  • Nakayama, M. (1997). Successes and failures of international organizations in dealing with international waters. Water International, 13, 367–382.

    Google Scholar 

  • Quiroz Londoño, O., Martínez, D., Massone, H., Bocanegra, E., Ferrante, A. (2006). Hidrogeología del Área Interserrana Bonaerense: Cuencas de los Arroyos El Moro, Tamangueyú y Seco. VIII Congreso Latinoamericano de Hidrología Subterránea y EXPOAGUA 2006, Asunción, Paraguay.

  • Recio, B., Ibáñez, J., Rubio, F., & Criado, J. A. (2005). A decision support system for analysing the impact of water restriction policies. Decision Support Systems, 39(3), 385–402. May 2005.

    Article  Google Scholar 

  • Reynolds, K. M., & Hessburg, P. F. (2005). Decision support for integrated landscape evaluation and restoration planning. Forest Ecology and Management, 207, 263–278.

    Article  Google Scholar 

  • Reynolds, K. M., Jensen, M., Andreasen, J., & Goodman, I. (2000). Knowledge-based assessment of watershed condition. Computers and Electronics in Agriculture, 27, 315–333.

    Article  Google Scholar 

  • Reynolds, K.M., Rodriguez, S., Bevans, K. (2003). The Ecosystem Management Decision Support System Version 3.0. USDA Forest Service Jefferson Way.

  • Rizzoli, A. E., & Young, W. Y. (1997). Delivering environmental decision support systems: software tools and techniques. Environmental Modelling and Software, 12(23), 237–249.

    Google Scholar 

  • Saaty, T. L. (1992). Decision making for leaders. Pittsburgh: RWS.

    Google Scholar 

  • Sala, J. (1975) Recursos Hídricos. Relatorio VI Congreso Geológico Argentino. 169–194. Bs. As.

  • Salewicz, K. A., & Nakayama, M. (2004). Development of a web-based decision support system (DSS) for managing large international rivers. Global Environmental Change, 14, 25–37.

    Article  Google Scholar 

  • Sewilam, H., Bartusseck, S., & Nacken, H. (2007). Rule-based decision support system for the morphological rehabilitation of watercourses. Water Resources Management, 21(12), 2037–2047.

    Article  Google Scholar 

  • Slocum, T. A. (1999). Thematic cartography and visualization. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • ESRI (Environment System Research Institute) (2007) http://www.esri.com. Accessed 10 May 2007.

  • Teruggi, M. (1954). El mineral volcánico-piroclástico en la sedimentación cuaternaria argentina. Revista de la Asociación Geológica Argentina, IX(3), 184–191. Buenos Aires.

    Google Scholar 

  • Uricchio, V. F., Giordano, R., & Lopez, N. (2004). A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation. Journal of Environmental Management, 73(3), 189–197.

    Article  Google Scholar 

  • USDA (1999). Soil taxonomy. A basic of soil classification for making and interpreting soils surveys, 2nd edn. Agriculture handbook no. 436, Departamento de Agricultura de Estados Unidos.

  • Zelaya, K., Lima, M.L., Laterra, P., Maceira, N., Massone, H. (2009). Simulación de cambios en el uso de la tierra en la cuenca del arroyo Dulce. Provincia de Buenos Aires, Argentina. Simposio de Geomática y otras tecnologías de la Ingeniería Agrícola y el Medio Ambiente. Cuba.

Download references

Acknowledgments

This research was carried out with funding from the National Agency for Science and Technology (PICT 20-25532 project) and the National University of Mar del Plata, Argentina (EXA 326/08). Two of the authors (MLL and AR) are indebted to the National Scientific and Technical Research Council (CONICET) for fellowship support. The authors would like to thank Keith M. Reynolds (USDA Forest Service, Pacific Northwest Research Station) for the Criterium DecisionPlus, NetWeaver and EMDS version support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lourdes Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, M.L., Romanelli, A. & Massone, H.E. Decision support model for assessing aquifer pollution hazard and prioritizing groundwater resources management in the wet Pampa plain, Argentina. Environ Monit Assess 185, 5125–5139 (2013). https://doi.org/10.1007/s10661-012-2930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2930-4

Keywords

Navigation