Skip to main content

Advertisement

Log in

Polycyclic aromatic hydrocarbons in soils from Urumqi, China: distribution, source contributions, and potential health risks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg kg−1 (dw) in soils, with a mean of 5,018 ± 4,896 μg kg−1 (n = 28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg kg−1 (dw; n = 28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02 × 10−6 for children and 2.72 × 10−5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cai, Q. Y., Mo, C. H., Li, Y. H., Zeng, Q. Y., Katsoyiannis, A., Wu, Q. T., et al. (2007). Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, South China. Chemosphere, 68(1), 159–168.

    Article  CAS  Google Scholar 

  • Chen, L. G., Ran, Y., Xing, B. S., Mai, B. X., He, J. H., Wei, X. G., et al. (2005). Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soil of Guangzhou, China. Chemosphere, 60(7), 879–890.

    Article  CAS  Google Scholar 

  • Chen, S. C., & Liao, C. M. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. The Science of the Total Environment, 366(1), 112–123.

    Article  CAS  Google Scholar 

  • Fismes, J., Perrin-Ganier, C., Empereur-Bissonnet, P., & Louis, M. (2002). Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetable grown on industrial contaminated soils. Journal of Environmental Quality, 31(5), 1649–1656.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science and Technology, 30(3), 825–832.

    Article  CAS  Google Scholar 

  • Hu, Y. D., Bai, Z. P., Zhang, L. W., Wang, X., Zhang, L., Yu, Q. C., et al. (2007). Health risk assessment for traffic policemen exposed to polycyclic aromatic hydrocarbons (PAHs) in Tianjin, China. The Science of the Total Environment, 382(2–3), 240–250.

    Article  CAS  Google Scholar 

  • ISO 14235 (1998). Soil quality—determination of organic carbon in soil by sulfochromic oxidation international Standard. International Standardization organization.

  • Knafla, A., Phillipps, K. A., Brecher, R. W., Petrovic, S., & Richardson, M. (2006). Development of a dermal cancer slope factor for benzo[a]pyrene. Regulatory Toxicology and Pharmacology, 45(2), 159–168.

    Article  CAS  Google Scholar 

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environment Science & Technology, 37(9), 1873–1881.

    Article  CAS  Google Scholar 

  • Lee, J. H., Gigliotti, C. L., Offenberg, J. H., Eisenreich, S. J., & Turpin, B. J. (2004). Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed. Atmospheric Environment, 38(35), 5971–5981.

    Article  CAS  Google Scholar 

  • Li, A., Jang, J. K., & Scheff, P. A. (2003). Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environental Science & Technology, 37(13), 2958–2965.

    Article  CAS  Google Scholar 

  • Li, J., Zhuang, G. S., Huang, K., Lin, Y., Xu, C., & Yu, S. L. (2008). Characteristics and sources of airborne particulate in Urumqi, China, the upstream area of Asia dust. Atmospheric Environment, 42, 776–787.

    Article  CAS  Google Scholar 

  • Li, J., Zhuang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of Total Environment, 355(1–3), 145–155.

    Article  CAS  Google Scholar 

  • Liao, C. M., & Chiang, K. C. (2006). Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere, 63(9), 1610–1619.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, G., Li, J., Cheng, H. R., Qi, S. H., Li, X. D., et al. (2007). Polycyclic aromatic hydrocarbons (PAHs) in the air of Chinese cities. Journal of Environmental Monitoring, 9(10), 1092–1098.

    Article  CAS  Google Scholar 

  • Lu, J. H., Jiang, P. P., Wu, L. S., & Chang, A. C. (2008). Assessing soil quality data by positive matrix factorization. Geoderma, 145(3–4), 259–266.

    Article  CAS  Google Scholar 

  • Mclachlan, M. S. (1996). Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environmental Science and Technology, 30(1), 252–259.

    Article  CAS  Google Scholar 

  • Meza-Figueroa, D., De la O-Villanueva, M., & De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment, 41(2), 276–288.

    Article  CAS  Google Scholar 

  • Mielke, H. W., Wang, G., Gonzales, C. R., Powell, E. T., Le, B., & Quach, V. N. (2004). PAH and metal mixtures in soils of inner-city and suburban New Orleans, Louisiana, USA. Environmental Toxicology and Pharmacology, 18(3), 243–247.

    Article  CAS  Google Scholar 

  • Miguel, A., & Pereira, P. (1989). Benzo(k)fluoranthene, benzo(ghi)perylene, and indeno(1,2,3-cd)pyrene: new tracers of automotive emissions in receptor modeling. Aerosol Science and Technology, 10(2), 292–295.

    Article  CAS  Google Scholar 

  • Moon, K. J., Han, J. S., Ghim, Y. S., & Kim, Y. J. (2008). Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan background site in East Asia. Environment International, 34(5), 54–64.

    Article  Google Scholar 

  • Morillo, E., Romero, A. S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grcman, H., et al. (2007). Soil pollution by PAHs in urban soils: a comparison of three European cities. Environmental Monitoiring, 9, 1001–1008.

    Article  CAS  Google Scholar 

  • Nam, J. J., Song, B. H., Eom, K. C., Lee, S. H., & Smith, A. (2003). Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere, 50(10), 1281–1289.

    Article  CAS  Google Scholar 

  • Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.

    Article  CAS  Google Scholar 

  • Paatero, P. (1997). A weighted non-negative least squares algorithm for three-way “PARAFAC” factor analysis. Chemometrics and Intelligent Laboratory Systems, 38(2), 223–242.

    Article  CAS  Google Scholar 

  • Peng, C., Chen, W. P., Liao, X. L., Wang, M., Ouyang, Z. Y., Jiao, W. T., et al. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environmental Pollution, 159(3), 802–808.

    Article  CAS  Google Scholar 

  • Ping, L. F., Luo, Y. M., Zhang, H. B., Li, Q. B., & Wu, L. H. (2007). Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environmental Pollution, 147(2), 358–365.

    Article  CAS  Google Scholar 

  • Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., & Sisler, J. F. (1998). Atmospheric aerosol over Alaska 2. Elemental composition and sources. Journal of Geophysical Research, 103(15), 19045–19057.

    Article  CAS  Google Scholar 

  • Randolph, H., Larsen, I. I. I., & Joele, B. (2003). Souece apportionment of polycylic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science and Technology, 37(9), 1873–1881.

    Article  Google Scholar 

  • United States Environment Protection Agency. (2008). EPA positive matrix factorization (PMF) 3.0:Fundamentals and User Guide, 3.0:1–81.

  • USEPA. (2001). Supplemental guidance for developing soil screening levels for superfund sites. OSWER; [9355.4-24].

  • USEPA. (1991). Risk assessment guidance for superfund, OSWER[9285.6-03].

  • USEPA (2011). Exposure Factors Handbook, Edition. http://www.epa.gov/ncea/efh/report.html.pdf.

  • Venkataraman, C., Lyons, J. M., & Friedlander, S. K. (1994). Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1 Sampling, measurement methods, and source characterization. Environmental Science and Technology, 28(4), 555–562.

    Article  CAS  Google Scholar 

  • Wakeham, S. G., Schaffner, C., & Giger, W. (1980). Polycyclic aromatic hydrocarbons in recent lake sediment—I. Compounds having anthropogenic origins. Geochimica et Cosmochimica Acta, 44, 403–413.

    Article  CAS  Google Scholar 

  • Wang, D. G., Tian, F., Yang, M., Liu, C., & Li, Y. F. (2009). Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China. Environmental Pollution, 157(5), 1559–1564.

    Article  CAS  Google Scholar 

  • Wei, B. G., Jiang, F. Q., Li, X. M., & Mu, S. Y. (2009). Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchemical Journal, 93(2), 147–152.

    Article  CAS  Google Scholar 

  • Wilcke, W. (2007). Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma, 141(3–4), 157–166.

    Article  CAS  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environmental Pollution, 88(1), 91–108.

    Article  CAS  Google Scholar 

  • Ye, B. X., Zhang, Z. H., & Mao, T. (2006). Pollution sources identification of polycyclic aromatic hydrocarbons of soils in Tianjin area, China. Chemosphere, 64(4), 525–534.

    Article  CAS  Google Scholar 

  • Yu, X. Z., Gao, Y., Wu, S. C., Zhang, H. B., Cheung, K. C., & Wong, M. H. (2006). Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China, affected by recycling of electronic waste using primitive technologies. Chemosphere, 65(9), 1500–1509.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Luo, Y. M., Wong, M. H., Zhao, Q. G., & Zhang, G. L. (2006). Distributions and concentrations of PAHs in Hong Kong soils. Environmental Pollution, 141(1), 107–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledged financial support provided by the National Natural Science Foundation of China (41101482).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Huang, P. & Chen, L. Polycyclic aromatic hydrocarbons in soils from Urumqi, China: distribution, source contributions, and potential health risks. Environ Monit Assess 185, 5639–5651 (2013). https://doi.org/10.1007/s10661-012-2973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2973-6

Keywords

Navigation