Skip to main content

Advertisement

Log in

Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Our objective was to assess the effect of the physical habitat degradation in three lowland streams of Argentina that are subject to different land uses. To address this matter, we looked into some physical habitat alterations, mainly the water quality and channel changes, the impact on macrophytes’ community, and the structural and functional descriptors of the epipelic biofilm and invertebrate assemblages. As a consequence of physical and chemical perturbations, we differentiated sampling sites with different degradation levels. The low degraded sites were affected mainly for the suburban land use, the moderately degraded sites for the rural land use, and the highly degraded sites for the urban land use. The data shows that the biotic descriptors that best reflected the environmental degradation were vegetation cover and macrophytes richness, the dominance of tolerant species (epipelic biofilm and invertebrates), algal biomass, O2 consumption by the epipelic biofilm, and invertebrates’ richness and diversity. Furthermore, the results obtained highlight the importance of the macrophytes in the lowland streams, where there is a poor diversification of abiotic substrates and where the macrophytes not only provide shelter but also a food source for invertebrates and other trophic levels such as fish. We also noted that both in benthic communities, invertebrates and epipelic biofilm supplied different information: the habitat’s physical structure provided by the macrophytes influenced mainly the invertebrate descriptors; meanwhile, the water quality mainly influenced most of the epipelic biofilm descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi, H., & Valentin, D. (2007). Multiple factor analysis. In N. J. Salkind (Ed.), Encyclopedia of measurement and statistics (pp. 657–663). Thousand Oaks (CA): Sage.

    Google Scholar 

  • APHA. (1998). Standard methods for examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association, American Water Works Association and Water Pollution Control Federation.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish (2nd ed.). Washington, D.C: US Environmental Protection Agency; Office of Water. EPA 841-B-99-002.

    Google Scholar 

  • Bauer, D. E., Donadelli, J., Gómez, N., Licursi, M., Ocón, C., Paggi, A. C., et al. (2002). Ecological status of the Pampean plain streams and rivers (Argentina). Verhandlungen des Internationalen Verein Limnologie, 28, 259–262.

    Google Scholar 

  • Biggs, B. J. F. (1989). Biomonitoring of organic pollution using periphyton, South Branch, Canterbury, New Zealand. New Zealand Journal of Marine and Freshwater Research, 23(2), 263–274.

    Article  CAS  Google Scholar 

  • Bode, R. W., Novak, M. A., & Abele, L. E. (2002). Quality assurance work plan for biological stream monitoring in New York State. Albany, New York: NYS Department of Environmental Conservation.

    Google Scholar 

  • Bonetto, A. A., & Wais, I. R. (1995). Southern South American streams and rivers. In C. E. Cushing, K. W. Cummins, & G. W. Minshall (Eds.), Ecosystems of the world. Rivers and stream ecosystems (pp. 257–293). Amsterdam: Elsevier.

    Google Scholar 

  • Bourassa, N. A., & Cattaneo, A. (1998). Control of periphyton biomass in Laurentian streams (Québec). (1988). Journal of the North American Benthological Society, 17, 420–424.

    Article  Google Scholar 

  • Brook, S. S., Palmer, M. A., Cardinale, B. J., Swan, C. M., & Riblett, S. (2002). Assessing stream ecosystems rehabilitation: limitations of community structure data. Restoration Ecology, 10, 156–168.

    Article  Google Scholar 

  • Brookes, A., & Gregory, K. J. (1988). Channelization, river engineering and geomorphology. In J. M. Hooke (Ed.), Geomorphology in Environmental Planning (pp. 145–168). Chichester: Wiley.

    Google Scholar 

  • Buffagni, A., Casalegno, C., & Erba, S. (2009). Hydromorphology and land use at different spatial scales: expectations from medium-sized rivers of the Western Italian Alps in a changing climate scenario. Fundamental and Applied Limnology—Archiv für Hydrobiologie, 174, 7–25.

    Article  Google Scholar 

  • Bunn, S. E., Davies, P. M., & Mosisch, T. D. (1999). Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology, 41, 333–345.

    Article  Google Scholar 

  • Burkart, R., del Valle Ruiz, L., Daniele, C., Natenzon, C., Ardura, F., & Balabusic, A. (1994). El Sistema Nacional de Áreas Naturales Protegidas de la Argentina. Buenos Aires, Argentina: Administración de Parques Nacionales.

    Google Scholar 

  • Buss, D. F., Baptista, D. F., Silveira, M. P., Nessimian, J. L., & Dorville, L. F. M. (2002). Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia, 481, 125–136.

    Article  CAS  Google Scholar 

  • Cabrera, A. L. (1976). Regiones Fitogeográficas Argentinas. In I. I. Fascículo (Ed.), Enciclopedia Argentina de Agricultura y Ganadería. Buenos Aires, Argentina: Acme S.A.C.I.

    Google Scholar 

  • Cabrera, A. L., & Zardini, E. M. (1993). Manual de la flora de los alrededores de Buenos Aires. Buenos Aires: ACME.

    Google Scholar 

  • Callisto, M., Moreno, C. E., & Barbosa, F. A. R. (2001). Habitat diversity and benthic functional trophic groups at Serra do Cipo, southeast Brazil. Revista Brasileira de Biologia, 61, 259–266.

    Article  CAS  Google Scholar 

  • Cortelezzi, A. (2010). Hábitats funcionales y macroinvertebrados en cauces modificados de arroyos de llanura: impacto sobre la calidad ecológica. PhD dissertation, FCNyM-UNLP, Argentina.

  • Cortelezzi, A., Paggi, A. C., Rodríguez, M., & Rodrigues Capítulo, A. (2011). Taxonomic and nontaxonomic responses to ecological changes in an urban lowland stream through the use of Chironomidae (Diptera) larvae. Science of the Total Environment, 409, 1344–1350.

    Article  CAS  Google Scholar 

  • Covich, A. P. (1988). Geographical and historical comparisons of neotropical streams: biotic diversity and detrital processing in highly variable habitats. Journal of the North American Benthological Society, 7, 361–386.

    Article  Google Scholar 

  • Craft, C., Krull, K., & Graham, S. (2007). Ecological indicator of nutrient enrichment, freshwater wetlands, Midwestern United States (US). Ecological Indicators, 7, 733–750.

    Article  Google Scholar 

  • Dauer, D. M., Ranasinghe, J. A., & Weisberg, S. B. (2000). Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries and Coasts, 23(1), 80–96.

    Article  Google Scholar 

  • Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification for stream trophic state: distributions of temperate stream types by chlorophyll, total N and P. Water Research, 32, 1455–1462.

    Article  CAS  Google Scholar 

  • Feijoó, C., & Menéndez, M. (2009). La biota de los ríos: los macrófitos. In A. Elosegui & S. Sabater (Eds.), Conceptos y técnicas en ecología fluvial (pp. 243–251). Bilbao: Fundación BBVA.

    Google Scholar 

  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., et al. (2005). Global consequences of land use. Science, 309, 570–574.

    Article  CAS  Google Scholar 

  • Fossati, O., Wasson, J. G., Hery, C., Marin, R., & Salinas, G. (2001). Impact of sediment releases on water chemistry and macroinvertebrate communities in clear water Andean streams (Bolivia). Archiv für Hydrobiologie, 151, 33–50.

    CAS  Google Scholar 

  • Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.

    Article  Google Scholar 

  • Giorgi, A., & Malacalza, L. (2002). Effect of an industrial discharge on water quality and periphyton structure in a Pampean stream. Environmental Monitoring and Assessment, 75(2), 107–119.

    Article  CAS  Google Scholar 

  • Giorgi, A., Feijoó, C., & Tell, G. (2005). Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservervation, 14, 1699–1718.

    Article  Google Scholar 

  • Gómez, N., & Licursi, M. (2001). The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology, 35, 173–181.

    Article  Google Scholar 

  • Gómez, N., Sierra, M. V., Cortelezzi, A., & Rodrigues Capítulo, A. (2008). Effects of discharges from the textile industry on the biotic integrity of benthic assemblages. Ecotoxicology and Environmental Safety, 69, 472–479.

    Article  Google Scholar 

  • Gómez, N., Donato, J. C., Giorgi, A., Guasch, H., Mateo, P., & Sabater, S. (2009). La biota de los ríos: los microorganismos autótrofos. In A. Elosegui & S. Sabater (Eds.), Conceptos y técnicas en ecología fluvial (pp. 219–242). Bilbao: Fundación BBVA.

    Google Scholar 

  • González del Tánago, M., & García de Jalón, D. (2004). Recuperación de espacios degradados: cursos de agua desnaturalizados. In D. Gómez Orea (Ed.), Restauración de espacios degradados. Cursos de agua desnaturalizados (pp. 465–486). Madrid: Mundi-Prensa.

    Google Scholar 

  • Greenacre, M. (2010). Biplots in practice. Fundacion BBVA. Madrid. http://www.multivariatestatistics.org. Accessed 10 August 2011.

  • Harper, D., & Everard, M. (1998). Why should the habitat-level approach underpin holistic river survey and management? Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 395–413.

    Article  Google Scholar 

  • Hearne, J. W., & Armitage, P. D. (1993). Implications of the annual macrophyte growth-cycle on habitat in rivers. Regulated Rivers: Research & Management, 8, 313–322.

    Article  Google Scholar 

  • Hering, D., Feld, C. K., Moog, O., & Ofenböck, T. (2006). Cook book for the development of a multi metric index for biological condition of aquatic ecosystems: experiences form the European AQEM and STAR projects and related initiatives. Hydrobiologia, 566, 311–324.

    Article  Google Scholar 

  • Hill, W. R., Ryon, M. G., Smith, J. G., Adams, S. M., Boston, H. L., & Stewart, A. J. (2010). The role of periphyton in mediating the effects of pollution in a stream ecosystem. Environmental Management, 45, 563–576.

    Article  Google Scholar 

  • Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. Great Lakes Entomologist, 20, 31–39.

    Google Scholar 

  • Hinck, S., Neu, T. R., Lavik, G., Mußmann, M., De Beer, D., & Jonkers, H. M. (2007). Physiological adaptation of nitrate storing Beggiatoa to diel cycling in a phototrophic hypersaline mat. Applied and Environmental Microbiology, 73, 7013–7022.

    Article  CAS  Google Scholar 

  • Hurtado, M. A., Giménez, J. E., & Cabral, M. G. (2006). Análisis ambiental del partido de La Plata. Aportes del ordenamiento territorial (1st ed.). Buenos Aires, Argentina: Consejo Federal de Inversiones.

    Google Scholar 

  • Jacobsen, D., & Sand-Jensen, K. (1994). Invertebrate herbivory on the submerged macrophyte Potamogeton perfoliatus in a Danish stream. Freshwater Biology, 31, 43–52.

    Article  Google Scholar 

  • Jowett, I. G. (1997). Instream flow methods: a comparison of approaches. Regulated Rivers: Research & Management, 13, 115–127.

    Article  Google Scholar 

  • Kail, J., Jahnig, S. C., & Hering, D. (2009). Relation between floodplain land use and river hydromorphology on different spatial scales – a case study from two lower-mountain catchments in Germany. Fundamental and Applied Limnology—Archiv für Hydrobiologie, 174, 63–73.

    Article  Google Scholar 

  • Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters: better biological monitoring. Washington DC: Island Press.

    Google Scholar 

  • Lange-Bertalot, H. (1979). Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia, Beiheft, 64, 285–304.

    Google Scholar 

  • Licursi, M. (2005). Efectos de las perturbaciones antropogénicas sobre la taxocenosis de diatomeas bentónicas en sistemas lóticos pampeanos. PhD dissertation, FCNyM-UNLP, Argentina.

  • Licursi, M., & Gómez, N. (2002). Benthic diatoms and some environmental conditions in three lowland streams. Annales de Limnologie, 38(2), 109–118.

    Article  Google Scholar 

  • Mackereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water analysis: some revised methods for limnologists. Scientific Publication (Freshwater Biological Association), 36, 124.

    Google Scholar 

  • Malmqvist, B., & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation, 29, 134–153.

    Article  Google Scholar 

  • McChesney, C. (1994). Literature review of the genus Hydrocotyle L. (Apiaceae), with particular emphasis on Hydrocotyle ranunculoides. Perth, W.A.: Swan River Trust.

    Google Scholar 

  • Merrit, R. W., & Cummins, K. W. (1996). Trophic relations of macroinvertebrates. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology. San Diego: Academic Press.

    Google Scholar 

  • Moya, N., Domínguez, E., Goitia, E., & Oberdorff, T. (2011). Desarrollo de un índice multimétrico basado em macroinvertebrados acuáticos para evaluar la integridad biológica en ríos de los valles interandinos de Bolivia. Ecología Austral, 21, 135–147.

    Google Scholar 

  • Ocón, C. S., & Rodrigues Capítulo, A. (2004). Presence and abundance of Ephemeroptera and other sensitive macroinvertebrates in relation with habitat conditions in pampean streams (Buenos Aires, Argentina). Archiv für Hydrobiologie, 159, 473–487.

    Article  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology, Evolution, and Systematics, 32, 333–365.

    Article  Google Scholar 

  • Pedersen, M. L., Friberg, N., & Larsen, S. E. (2004). Physical habitat structure in Danish lowland streams. River Research and Applications, 20, 653–669.

    Article  Google Scholar 

  • Poi de Neiff, A. S., & Neiff, J. J. (1989). Dry weight loss and colonization by invertebrates of Eichhornia crassipes under aerobic conditions. Journal of Tropical Ecology, 30, 175–182.

    Google Scholar 

  • Reid, H. E., Brierley, G. J., & Boothroyd, I. K. G. (2010). Influence of bed heterogeneity and habitat type on macroinvertebrate uptake in peri-urban streams. International Journal of Sediment Research, 25(3), 203–220.

    Article  Google Scholar 

  • Rodrigues Capítulo, A., Tangorra, M., & Ocón, C. S. (2001). Use of benthic macroinvertebrate to assess the ecological status of pampean rivers (Argentine). Aquatic Ecology, 35, 109–119.

    Article  Google Scholar 

  • Rodrigues Capítulo, A., Gómez, N., Giorgi, A., & Feijoo, C. (2010). Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Hydrobiologia, 657, 53–70.

    Article  Google Scholar 

  • Sandin, L. (2009). The effects of catchment land-use, near-stream vegetation, and river hydromorphology on benthic macroinvertebrates in the Ema catchment, south Sweden. Fundamental and Applied Limnology - Archiv für Hydrobiologie, 174, 75–87.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Chicago: University of Illinois Press.

    Google Scholar 

  • Sierra, M. V. (2009). Microbentos de sistemas lóticos pampeanos y su relación con la calidad del agua: respuestas estructurales y funcionales. PhD dissertation, FCNYM-UNLP, Argentina.

  • Sierra, M. V., & Gómez, N. (2007). Structural characteristics and oxygen consumption of the epipelic biofilm in three lowland streams exposed to different land uses. Water, Air, and Soil Pollution, 186, 115–127.

    Article  CAS  Google Scholar 

  • Sierra, M. V., & Gómez, N. (2010). Assessing the disturbance caused by an industrial discharge using field transfer of epipelic biofilm. Science of the Total Environment, 408, 2696–2705.

    Article  Google Scholar 

  • Soriano, A., León, R. J. C., Sala, O. E., Lavado, R. S., Deregibus, V. A., Cauhepé, M. A., et al. (1991). Río de la Plata Grasslands. In R. T. Copeland (Ed.), Ecosystems of the world. Natural grasslands, introduction and western hemisphere (pp. 367–407). New York: Elsevier.

    Google Scholar 

  • Steinman, A. D., & Lamberti, G. A. (1996). Biomass and pigments of benthic algae. In R. Hauer & G. A. Lamberti (Eds.), Stream ecology (pp. 295–313). San Diego: Academic Press.

    Google Scholar 

  • Tangorra, M. (2004). Colonizacion y descompsición de especies vegetales por invertebrados en sistemas lóticos pampásicos. PhD dissertation, FCNYM-UNLP, Argentina.

  • Tell, G., & Conforti, V. (1986). Euglenophyta Pigmentadas de la Argentina. Band 15, Bibliotheca Phycologica. Berlin, Stuttgart.

  • Tomanova, S., Goitia, E., & Helesic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556, 251–264.

    Article  Google Scholar 

  • Van Sickle, J. (2003). Analyzing correlations between stream and watershed attributes. Journal of the American Water Resources Association, 39, 717–726.

    Article  Google Scholar 

  • Villeneuve, A., Montuelle, B., & Bouchez, A. (2010). Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquatic Sciences, 72, 33–44.

    Article  Google Scholar 

  • Williams, T. M., & Unz, R. F. (1989). The nutrition of Thiothrix, type 021 N, 1 Beggiatoa and Leucothrix strains. Water Research, 2, 15–22.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been financed by a grant from CONICET and PICT no. 33939 (FONCYT). The authors would like to thank Jorge Donadelli, from the Laboratory of Chemistry of the ILPLA, for the nutrient and oxygen demand analyses of the water samples. We would also like to thank Dra. Delia Bauer for her assistance in the field work in the Martín Stream. This manuscript constitutes scientific contribution no. 909 from the “Instituto de Limnología Dr. Raúl A. Ringuelet”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Victoria Sierra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortelezzi, A., Sierra, M.V., Gómez, N. et al. Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). Environ Monit Assess 185, 5801–5815 (2013). https://doi.org/10.1007/s10661-012-2985-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2985-2

Keywords

Navigation