Skip to main content

Advertisement

Log in

Addressing statistical and operational challenges in designing large-scale stream condition surveys

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Implementing a statistically valid and practical monitoring design for large-scale stream condition monitoring and assessment programs can be difficult due to factors including the likely existence of a diversity of ecosystem types such as ephemeral streams over the sampling domain; limited resources to undertake detailed monitoring surveys and address knowledge gaps; and operational constraints on effective sampling at monitoring sites. In statistical speak, these issues translate to defining appropriate target populations and sampling units; designing appropriate spatial and temporal sample site selection methods; selection and use of appropriate indicators; and setting effect sizes with limited ecological and statistical information about the indicators of interest. We identify the statistical and operational challenges in designing large-scale stream condition surveys and discuss general approaches for addressing them. The ultimate aim in drawing attention to these challenges is to ensure operational practicality in carrying out future monitoring programs and that the resulting inferences about stream condition are statistically valid and relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • ANZECC and ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality, Volume 1. Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand.

  • Bailey, R.C., Norris, R.H., Reynoldson, T.B. (2004). Bioassessment of freshwater ecosystems: Using the reference condition approach. Boston: Kluwer Academic Publishers.

  • Cochran, W.G. (1977) Sampling techniques. 3rd ed. New York: Wiley.

  • Cressie, N. (1993). Aggregation in geostatistical problems. In A. Soares (Ed.), Geostatistics troia ’92, vol. 1 (pp. 25–36). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Cressie, N. (1996). Change of support and the modifiable area unit problem. Geographical Systems, 3, 159–180.

    Google Scholar 

  • Davies, B.R., Thoms, M.C., Walker, K.F., O’Keefe, J.H., Gore, J.A. (1994). Dryland rivers: Their ecology, conservation and management. In P. Calow and G.E. Petts (eds), The rivers handbook, Volume 2 (pp 484–511). Oxford: Blackwell Scientific.

  • Detenbeck, N. E., Cincotta, D., Denver, J. M., Greenlee, S. K., Olsen, A. R., & Pitchford, A. M. (2005). Watershed-based survey designs. Environmental Monitoring and Assessment, 103, 59–81.

    Article  CAS  Google Scholar 

  • Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring design. Water Resources, 3, 1935–1948.

    Google Scholar 

  • Dobbie, M. J., Henderson, B. L., & Stevens, D. L., Jr. (2008). Sparse sampling: spatial design for aquatic monitoring. Statistics Surveys, 2, 113–153.

    Article  Google Scholar 

  • Fairfield-Smith, H. (1938). An empirical law describing heterogeneity in the yields of agricultural crops. Journal of Agricultural Science, 28, 1–23.

    Article  Google Scholar 

  • Fairweather, P. (1991). Statistical power and design requirements for environmental monitoring. Australian Journal of Marine & Freshwater Research, 42, 555–567.

    Article  Google Scholar 

  • Field, S. A., O’Connor, P. J., Tyre, A. J., & Possingham, H. P. (2007). Making monitoring meaningful. Australian Journal of Ecology, 32, 485–491.

    Article  Google Scholar 

  • Fox, D. R. (2001). Environmental power analysis – a new perspective. Environmetrics, 12, 437–449.

    Article  Google Scholar 

  • Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97, 632–648.

    Article  Google Scholar 

  • Hamilton, S. K., Bunn, S. E., Thoms, M. C., & Marshall, J. C. (2005). Persistence of aquatic refugia between flow pulses in a dryland river system (Cooper Creek, Australia). Limnology and Oceanography, 50, 743–754.

    Article  CAS  Google Scholar 

  • Hawkins, C. P., Olsen, J. R., & Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society, 29, 312–343.

    Article  Google Scholar 

  • Hughes, R. M. (1995). Defining acceptable biological status by comparing with reference conditions. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: Tools for water resource planning and decision making (pp. 31–47). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Hughes, R. M., Paulsen, S. G., & Stoddard, J. L. (2000). EMAP-Surface Waters: a multiassemblage, probability survey of ecological integrity in the U.S.A. Hydrobiologia, 422–423, 429–443.

    Article  Google Scholar 

  • Hughes, R. M., & Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27, 837–859.

    Article  Google Scholar 

  • Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters: Better biological monitoring. Washington, D.C.: Island Press.

    Google Scholar 

  • Kennard, M. J., Pusey, B. J., Olden, J. D., Mackay, S. J., Stein, J. L., & Marsh, N. (2010). Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 55, 171–193.

    Article  Google Scholar 

  • Keogh, M. J., & Mapstone, B. (1997). Designing environmental monitoring for pulp mills in Australia. Water Science and Technology, 35, 397–404.

    Article  Google Scholar 

  • Khalil, B., & Ouarda, T. B. M. J. (2009). Statistical approaches used to assess and redesign surface water-quality-monitoring networks. Journal of Environmental Monitoring, 11, 1915–1929.

    Article  CAS  Google Scholar 

  • Krebs, C. J. (1999). Ecological methodology (2nd ed.). California: Benjamin Cummings.

    Google Scholar 

  • Kuhnert, P., Bartley, R., Peterson, E., Browne, M., Harch, B., Steven, A., Gibbs, M., Henderson, A., Brando, V. (2007). Conceptual and statistical framework for the water quality component of the integrated report card for the Great Barrier Reef Catchments. Final Milestone Report to MSTRF, Project 3.7.7., CSIRO, Brisbane. 116p. (Available from http://www.rrrc.org.au/mtsrf/theme_3/project_3_7_7.html)

  • Ladson, A. R., White, L. J., Doolan, J. A., Finlayson, B. L., Hart, B. T., Lake, P. S., et al. (1999). Development and testing of an Index of Stream Condition for water management in Australia. Freshwater Biology, 41, 453–468.

    Article  Google Scholar 

  • Lammert, M., & Allan, J. D. (1999). Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management, 23, 257–270.

    Article  Google Scholar 

  • Larsen, D. P. (1997). Sample survey design issues for bioassessment of inland aquatic ecosystems. Human and Ecological Risk Assessment, 3, 979–991.

    Article  Google Scholar 

  • Maher, W. A., Cullen, P. W., & Norris, R. H. (1994). Framework for designing sampling programs. Environmental Monitoring and Assessment, 30, 134–162.

    Article  Google Scholar 

  • Mapstone, B. D. (1995). Scalable decision criteria for environmental impact assessment: effect size, Type I and Type II errors. Ecological Applications, 5, 401–410.

    Article  Google Scholar 

  • McDonald, T. (2003). Review of Environmental monitoring methods: survey design. Environmental Monitoring and Assessment, 85, 277–292.

    Article  Google Scholar 

  • Morais, M., Pinto, P., Guilherme, P., Rosado, J., & Antunes, I. (2004). Assessment of temporary streams: the robustness of metric and multimetric indices under different hydrological conditions. Hydrobiologia, 516, 229–249.

    Article  Google Scholar 

  • Munkittrick, K. R., Arens, C. J., Lowell, R. B., & Kaminski, G. P. (2009). A review of potential methods of determining critical effect size for designing environmental monitoring programs. Environmental Toxicology and Chemistry, 28, 1361–1371.

    Article  CAS  Google Scholar 

  • Negus, P., Moller, G., Blessing, J., Davis, L., Marshall, J., Dobbie, M. (2010). Stream and Estuary Assessment Program: an assessment framework for riverine ecosystems. Water Planning Sciences, Department of Environment and Resource Management, The State of Queensland. ISBN 9311662183293

  • Nestler, J. M., Theiling, C. H., Lubinski, K. S., & Smith, D. L. (2010). Reference condition approach to restoration planning. River Research and Applications, 26, 1199–1219.

    Article  Google Scholar 

  • Olsen, A. R., & Peck, D. V. (2008). Survey design and extent estimates for the Wadeable Streams Assessment. Journal of the North American Benthological Society, 27, 822–836.

    Article  Google Scholar 

  • Olsen, A. R., Sedransk, J., Edwards, D., Gotway, C. A., Liggett, W., Rathbun, S., et al. (1999). Statistical issues for monitoring ecological and natural resources in the United States. Environmental Monitoring and Assessment, 54, 1–45.

    Article  Google Scholar 

  • Overton, W. S., & Stehman, S. V. (1996). Desirable design considerations for long-term monitoring of ecological variables. Environmental and Ecological Statistics, 3, 349–361.

    Article  Google Scholar 

  • Paulsen, S. G., Hughes, R. M., & Larsen, D. P. (1998). Critical elements in describing and understanding our nation’s aquatic resources. Journal of the American Water Resources Association, 34, 995–1005.

    Article  CAS  Google Scholar 

  • Pukelsheim, F. (1993). Optimal design of experiments. New York: Wiley & Sons.

    Google Scholar 

  • Sanders, T. G., Ward, R. C., Loftis, J. C., Steele, T. D., Adrian, D. D., & Yevjevich, V. (1990). Design of networks for monitoring water quality (3rd ed.). Littleton, CO: WRP Publication. 328 pp.

    Google Scholar 

  • Shao, Q., & Wang, Y.-G. (2009). Statistical power calculation and sample size determination for environmental studies with data below detection limits. Water Resources Research, 45, W09410. doi:10.1029/2008WR007563.

    Article  Google Scholar 

  • Stehman, S. V. (1999). Basic probability sampling designs for thematic map accuracy assessments. International Journal of Remote Sensing, 20(12), 2423–2441.

    Article  Google Scholar 

  • Stein, E. D., & Bernstein, B. (2008). Integrating probabilistic and targeted compliance monitoring for comprehensive watershed assessment. Environmental Monitoring and Assessment, 144, 117–129.

    Article  Google Scholar 

  • Stevens, D. L., Jr., & Olsen, A. R. (2004). Spatially-balanced sampling of natural resources. Journal of the American Statistical Association, 99, 262–278.

    Article  Google Scholar 

  • Steward, A. L., von Schiller, D., Tockner, K., Marshall, J. C., & Bunn, S. E. (2012). When the river runs dry: human and ecological values of dry river beds. Frontiers in Ecology and the Environment, 10. doi:10.1890/110136.

  • Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63, 923–938.

    Article  Google Scholar 

  • Theobald, D. M., Stevens, D. L., Jr., White, D., Urquhart, N. S., Olsen, A. R., & Norman, J. B. (2007). Using GIS to generate spatially-balanced random survey designs for natural resource applications. Environmental Management, 40, 134–146.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Commonwealth Scientific and Industrial Research Organisation’s (CSIRO Australia) Water for a Healthy Country research flagship and the Queensland Department of Environment and Resource Management (DERM). We thank the staff from the DERM Water Planning Ecology group who contributed to the development of the Stream and Estuary Assessment Program, the program which was the catalyst for this paper. In particular, we thank Joanna Blessing, Jon Marshall, Louisa Davis and Glen Moller. We greatly appreciate discussions with Professor Don Stevens and constructive comments received from number of internal and external reviewers, which helped improve the content, structure and clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa J. Dobbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobbie, M.J., Negus, P. Addressing statistical and operational challenges in designing large-scale stream condition surveys. Environ Monit Assess 185, 7231–7243 (2013). https://doi.org/10.1007/s10661-013-3097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3097-3

Keywords

Navigation