Skip to main content
Log in

Emission of volatile organic compounds from religious and ritual activities in India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Worshipping activity is a customary practice related with many religions and cultures in various Asian countries, including India. Smoke from incense burning in religious and ritual places produces a large number of health-damaging and carcinogenic air pollutants include volatile organic compounds (VOCs) such as formaldehyde, benzene, 1,3 butadiene, styrene, etc. This study evaluates real-world VOCs emission conditions in contrast to other studies that examined emissions from specific types of incense or biomass material. Sampling was conducted at four different religious places in Raipur City, District Raipur, Chhattisgarh, India: (1) Hindu temples, (2) Muslim graveyards (holy shrines), (3) Buddhist temples, and (4) marriage ceremony. Concentrations of selected VOCs, respirable particulate matter (aerodynamic diameter, <5 μm), carbon dioxide, and carbon monoxide were sampled from the smoke plumes. Benzene has shown highest emission factor (EF) among selected volatile organic compounds in all places. All the selected religious and ritual venues have shown different pattern of VOC EFs compared to laboratory-based controlled chamber studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Akagi, S. K., et al. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry Physical, 11, 4039–4072.

    Article  CAS  Google Scholar 

  • Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966.

    Article  CAS  Google Scholar 

  • Arif, A. A., & Shah, S. M. (2007). Association between personal exposure to volatile organic compounds and asthma among US adult population. International Archives of Occupational and Environmental Health, 80, 711–719.

    Article  CAS  Google Scholar 

  • Beck, J. P., Heutelbeck, A., & Dunkelberg, H. (2007). Volatile organic compounds in dwelling houses and stables of dairy and cattle farms in Northern Germany. Science of the Total Environment, 372, 440–454.

    Article  CAS  Google Scholar 

  • Busoon, S., Patrick, B., & Wonho, Y. (2003). Volatile organic compounds concentration in residential indoor and outdoor and in personal exposure in Korea. Environmental Pollution, 29, 79–85.

    Google Scholar 

  • Cai, H., & Xie, S. D. (2009). Tempo-spatial variation of emission inventories of speciated volatile organic compounds from on-road vehicles in China. Atmospheric Chemistry Physical, 9, 6983–7002.

    Article  CAS  Google Scholar 

  • Chow, J. C. (1995). Critical review: measurement methods to determine compliance with ambient air quality standards for suspended particles. Journal of the Air & Waste Management Association, 45, 320–382.

    Article  CAS  Google Scholar 

  • DeHaan, J. D., Brien, D. J., & Large, R. (2004). Volatile organic compounds from the combustion of human and animal tissue. Science & Justice, 44(4), 223–236.

    Article  CAS  Google Scholar 

  • Dhammapala, R., Claiborn, C., Corkill, J., & Gullett, B. (2006). Particulate emissions from wheat and Kentucky bluegrass stubble burning in eastern Washington and northern Idaho. Atmospheric Environment, 40, 1007–1015.

    Article  CAS  Google Scholar 

  • Dhammapala, R., Claiborn, C., Jimenez, J., Corkill, J., Gullett, B., Simpson, C., et al. (2007). Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns. Atmospheric Environment, 41, 2660–2669.

    Article  CAS  Google Scholar 

  • Feingold, G., & Morley, B. (2003). Aerosol hygroscopic properties as measured by LIDAR and comparison with in situ measurements. Journal of Geophysical Research, 108, AAC1-1–AAC1-11.

    Article  Google Scholar 

  • Gokhale, S., Kohajda, T., & Schlink, U. (2008). Source apportionment of human personal exposure to volatile organic compounds in homes, offices and outdoors by chemical mass balance and genetic algorithm receptor models. Science of the Total Environment, 407, 122–138.

    Article  CAS  Google Scholar 

  • Goldstein, A. H., & Galbally, I. E. (2007). Known and unexplored organic constituents in the earth’s atmosphere. Environmental Science and Technology, 41(5), 1514–1521.

    Article  CAS  Google Scholar 

  • Guo, H., Lee, S. C., Chan, L. Y., & Li, W. M. (2004). Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research, 94, 57–66.

    Article  CAS  Google Scholar 

  • Haq, M. S., & Haq, M. N. (2006). Studies on the effect of urine on biogas production. Bangladesh Journal of Scientific and Industrial Research, 41, 23–32.

    Google Scholar 

  • Janhall, S., Andreae, M. O., & Poschl, U. (2010). Biomass burning aerosol emissions from vegetation fires: particle number and mass emission factors and size distributions. Atmospheric Chemistry Physical, 10, 1427–1439.

    Article  Google Scholar 

  • Jetter, J. J., Guo, Z. S., Mcbrian, J. A., & Flynn, M. R. (2002). Characterization of emissions from burning incense. Science of the Total Environment, 295, 51–67.

    Article  CAS  Google Scholar 

  • Kumar, A., & Viden, I. (2007). Volatile organic compounds: sampling methods and their worldwide profile in ambient air. Environmental Monitor Assessment, 131, 301–321.

    Article  CAS  Google Scholar 

  • Lee, S. C., & Wang, B. (2004). Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber. Atmospheric Environment, 38, 941–951.

    Article  CAS  Google Scholar 

  • Maharjan S (2012) Estimation and mapping above ground woody carbon stocks using lidar data and digital camera imagery in the hilly forests of Gorkha Nepal, Dissertation. Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, NL

  • Maleknia, S. D., Bell, T. L., & Adams, M. A. (2009). Eucalypt smoke and wildfires: temperature dependent emissions of biogenic volatile organic compounds. International Journal Mass Spectrometry, 279(2–3), 126–133.

    Article  CAS  Google Scholar 

  • Mason, B., Fujita, E. M., Campbell, D. E., & Zielinska, B. (2011). Application and evaluation of passive samplers for assessment of community exposure to toxic air contaminants and related pollutants. Environmental Science and Technology, 45, 2243–2249.

    Article  CAS  Google Scholar 

  • Massey, D., Kulshrestha, A., Habil, M., & Taneja, A. (2013). Particulate matter concentrations and their related metal toxicity in rural resident environment of semi arid region of India. Atmospheric Environment, 67, 278–286.

    Article  CAS  Google Scholar 

  • Navasumrit, P., Arayasiri, M., Hiang, O. M. T., Leechawengwongs, M., Promvijit, J., Choonvisase, S., et al. (2008). Potential health effects of exposure to carcinogenic compounds in incense smoke in temple workers. Chemico-Biological Interactions, 173(1), 19–31.

    Article  CAS  Google Scholar 

  • Padhy, P. K., & Varshney, C. K. (2005). Emission of volatile organic compounds (VOC) from tropical plant species in India. Chemosphere, 59, 1643–1653.

    Article  CAS  Google Scholar 

  • Pandit, G. G., Srivastava, P. K., & Mohan Rao, A. M. (2001). Monitoring of indoor volatile organic compounds and polycyclic aromatic hydrocarbons arising from kerosene cooking fuel. Science of the Total Environment, 279, 159–165.

    Article  CAS  Google Scholar 

  • Pinto, D. M., Tiiva, P., Miettinen, P., Joutsensaari, J., Kokkola, H., Nerg, A. M., et al. (2007). The effects of increasing atmospheric ozone on biogenic monoterpene profiles and the formation of secondary aerosols. Atmosphere Environmental, 41(23), 4877–4887.

    Article  CAS  Google Scholar 

  • Platnick, S., & Twomey, S. (1994). Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high resolution radiometer. Journal of Applied Meteorology, 33(3), 334–347.

    Article  Google Scholar 

  • Polzin, G. M., Kosa-Maines, R. E., Ashley, D. L., & Watson, C. H. (2007). Analysis of volatile organic compounds in mainstream cigarette smoke. Environmental Science and Technology, 41(4), 1297–1302.

    Article  CAS  Google Scholar 

  • Pun, B. K., Wu, S. Y., & Seigneur, C. (2002). Contribution of biogenic emissions to the formation of ozone and particulate matter in the Eastern United States. Environmental Science and Technology, 36, 3586–3596.

    Article  CAS  Google Scholar 

  • Rable, A., & Eyre, N. (1998). An estimate of regional and global O-3 damage from precursor NOx and VOC emissions. Environmental International, 24(8), 835–850.

    Article  Google Scholar 

  • Radiello. http://www.radiello.com/. Accessed March 2010.

  • Reimann, S., & Lewis, A. C. (2007). In R. Koppmann (Ed.), Volatile organic compounds in the atmosphere (p. 33). Oxford, UK: Blackwell.

    Chapter  Google Scholar 

  • Saborit, J. M. D., Aquilina, N. J., Meddings, C., Baker, S., Vardoulakis, S., & Harrison, R. M. (2009). Measurement of personal exposure to volatile organic compounds and particle associated PAH in three UK regions. Environmental Science and Technology, 43, 4582–4588.

    Article  Google Scholar 

  • See, S. W., & Balasubramanian, R. (2011). Characterization of fine particle emissions from incense burning. Building and Environment, 46, 1074–1080.

    Article  Google Scholar 

  • Srivastava, A., Joseph, A. E., & Devotta, S. (2006). Volatile organic compounds in ambient air of Mumbai, India. Atmospheric Environment, 40, 892–903.

    Article  CAS  Google Scholar 

  • Taneja, A., Masih, A., & Saini, R. (2008). Indoor air quality of houses located in urban in environment of Agra. Annals of the New York Academy of Sciences, 1140(1), 228–245.

    Article  CAS  Google Scholar 

  • Tovalin-Ahumada, H., & Whitehead, L. (2007). Personal exposures to volatile organic compounds among outdoor and indoor workers in two Mexican cities. Science of the Total Environment, 376, 60–71.

    Article  CAS  Google Scholar 

  • Wang, B., Lee, S. C., Ho, K. F., & Kang, Y. M. (2007). Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong. Science of the Total Environment, 377, 52–60.

    Article  CAS  Google Scholar 

  • Yang, C. R., Lin, T. C., & Chang, F. H. (2007). Particle size distribution and PAH concentrations of incense smoke in a combustion chamber. Environmental Pollution, 145, 606–615.

    Article  CAS  Google Scholar 

  • Zielinska, B., Sagebiel, J. C., Harshfield, G., Gertler, A. W., & Pierson, W. R. (1996). Volatile organic compounds up to C20 emitted from motor vehicles: measurement methods. Atmospheric Environment, 30, 2269–2286.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Desert Research Institute, Reno, NV, USA and Pt. Ravishankar Shukla University, Raipur, India for providing analytical support. One of the authors (SD) is grateful to the Department of Science and Technology, New Delhi for providing Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsh Pervez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewangan, S., Chakrabarty, R., Zielinska, B. et al. Emission of volatile organic compounds from religious and ritual activities in India. Environ Monit Assess 185, 9279–9286 (2013). https://doi.org/10.1007/s10661-013-3250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3250-z

Keywords

Navigation