Skip to main content
Log in

Noninvasive heavy metal pollution assessment by means of Iberian wolf (Canis lupus signatus) hair from Galicia (NW Spain): a comparison with invasive samples

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current study represents the first investigation of the suitability of wolf hair as indicator tissue for metal exposure and accumulation within NW Spanish ecosystems. Dead animals, which were not specifically killed for these purposes, were necropsied, and further toxicological analyses were performed in order to establish the heavy metal content (Pb, Cd, and Zn) in liver, kidney, and hair, by means of inductively coupled plasma optical emission spectrometry. Two different factors, gender and age, were considered in order to determine their influence on heavy metal accumulation. Mean liver, kidney and hair concentrations of both toxic element, Cd (0.528, 2.692, and 0.026 ppm) and Pb (4.108, 0.031, and 0.196 ppm) considered on a dry weight basis, were situated below the established as acute toxicity levels for mammals. The highest concentrations were quantified for Zn, with means ranging from a maximum in hair samples (150.9 ppm) to a minimum in kidney samples (25.81 ppm). When the variable of gender and age were considered, female and adult wolves had higher concentrations of Cd in all the considered organs, although differences were only statistically significant for kidney. Neither the sex nor the age had a significant effect on Pb and Zn concentrations. A significant positive correlation (p < 0.05) was identified between hair and liver Pb concentrations, as well as between hair and kidney Cd concentrations, thus suggesting the interest of the noninvasive sample for future ecotoxicological biomonitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrian, W. J., & Stevens, M. L. (1979). Wet versus dry weights for heavy metal toxicity determinations in duck liver. Journal of. Wildlife Diseases, 15(1), 125–126.

    CAS  Google Scholar 

  • Appenzeller, B. M., & Tsatsakis, A. M. (2012). Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: state of the art, critical review, and future needs. Toxicology Letters, 210(2), 119–140.

    Article  CAS  Google Scholar 

  • Beernaert, J., Scheirs, J., Leirs, H., Blust, R., & Verhagen, R. (2007). Nondestructive pollution exposure assessment by means of wood mice hair. Environmental Pollution, 145(2), 443–451.

    Article  CAS  Google Scholar 

  • Burger, J. (2007). A framework and methods for incorporating gender-related issues in wildlife risk assessment: gender-related differences in metal levels and other contaminants as a case study. Environmental Research, 104(1), 153–162.

    Article  CAS  Google Scholar 

  • Burger, J., Fossi, C., McClellan-Green, P., & Orlando, E. F. (2007). Methodologies, bioindicators, and biomarkers for assessing gender-related differences in wildlife exposed to environmental chemicals. Environmental Research, 104(1), 135–152.

    Article  CAS  Google Scholar 

  • Clarke, J. U. (1998). Evaluation of censored data methods to allow statistical comparisons among very small samples with below detection limit observations. Environmental Science & Technology, 32(1), 177–183.

    Article  CAS  Google Scholar 

  • D’Have, H., Scheirs, J., Covaci, A., van den Brink, N. W., Verhagen, R., & De Coen, W. (2007). Nondestructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): IV. Hair versus soil analysis in exposure and risk assessment of organochlorine compounds. Environmental Pollution, 145(3), 861–868.

    Article  Google Scholar 

  • D’Have, H., Scheirs, J., Mubiana, V. K., Verhagen, R., Blust, R., & De Coen, W. (2006). Nondestructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations. Environmental Pollution, 142(3), 438–448.

    Article  Google Scholar 

  • Dietz, R., Riget, F., & Born, E. W. (2000). Geographical differences of zinc, cadmium, mercury, and selenium in polar bears (Ursus maritimus) from Greenland. Science of the Total Environment, 245(1–3), 25–47.

    Article  CAS  Google Scholar 

  • Dip, R., Stieger, C., Deplazes, P., Hegglin, D., Muller, U., Dafflon, O., et al. (2001). Comparison of heavy metal concentrations in tissues of red foxes from adjacent urban, suburban, and rural areas. Archives of Environmental Contamination and Toxicology, 40(4), 551–556.

    Article  CAS  Google Scholar 

  • Dodds-Smith, M. E., Johnson, M. S., & Thompson, D. J. (1992). Trace metal accumulation by the shrew Sorex araneus. II. Tissue distribution in kidney and liver. Ecotoxicology and Environmental Safety, 24(1), 118–130.

    Article  CAS  Google Scholar 

  • Eisler, R. (1993). Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. (Vol. Report 26, pp. 106). Laurel: US Fish and Wildlife Service.

    Google Scholar 

  • Fritsch, C., Cosson, R. P., Coeurdassier, M., Raoul, F., Giraudoux, P., Crini, N., et al. (2010). Responses of wild small mammals to a pollution gradient: host factors influence metal and metallothionein levels. Environmental Pollution, 158(3), 827–840.

    Article  CAS  Google Scholar 

  • Gamberg, M., & Braune, B. M. (1999). Contaminant residue levels in arctic wolves (Canis lupus) from the Yukon Territory, Canada. Science of the Total Environment, 243–244, 329–338.

    Article  Google Scholar 

  • García-Fernández, A. J. (1994). Impregnación por plomo y cadmio en aves silvestres de la Región de Murcia. Murcia: University of Murcia.

    Google Scholar 

  • Gerhardsson, L., Englyst, V., Lundström, N. G., Nordberg, G., Sandberg, S., & Steinvall, F. (1995). Lead in tissues of deceased lead smelter workers. Journal of Trace Elements in Medicine and Biology, 9(3), 8.

    Article  Google Scholar 

  • Gochfeld, M. (1997). Factors influencing susceptibility to metals. Environmetal Health Perspectives, 105(4), 6.

    Google Scholar 

  • Gonzalez, X. I., Aboal, J. R., Fernandez, J. A., & Carballeira, A. (2008). Evaluation of some sources of variability in using small mammals as pollution biomonitors. Chemosphere, 71(11), 2060–2067.

    Article  CAS  Google Scholar 

  • Halbrook, R. S., Jenkins, J. H., Bush, P. B., & Seabolt, N. D. (1994). Sublethal concentrations of mercury in river otters: monitoring environmental contamination. Archives of Environmental Contamination and Toxicology, 27(3), 306–310.

    Article  CAS  Google Scholar 

  • Harding, L. E., Harris, M. L., & Elliott, J. E. (1998). Heavy and trace metals in wild mink (Mustela vison) and river otter (Lontra canadensis) captured on rivers receiving metals discharges. Bulletin of Environmental Contamination and Toxicology, 61(5), 600–607.

    Article  CAS  Google Scholar 

  • Hariono, B., Ng, J., & Sutton, R. (1993). Lead concentrations in tissues of fruit bats (Pteropus sp.) in urban and nonurban locations. Wildlife Research, 20(3), 315–319.

    Article  Google Scholar 

  • Hoekstra, P. F., Braune, B. M., Elkin, B., Armstrong, F. A., & Muir, D. C. (2003). Concentrations of selected essential and nonessential elements in arctic fox (Alopex lagopus) and wolverines (Gulo gulo) from the Canadian Arctic. Science of the Total Environment, 309(1–3), 81–92.

    Article  CAS  Google Scholar 

  • Hoffmann, S. R., Blunck, S. A., Petersen, K. N., Jones, E. M., Koval, J. C., Misek, R., et al. (2010). Cadmium, copper, iron, and zinc concentrations in kidneys of gray wolves, Canis lupus, from Alaska, Idaho, Montana (USA) and the Northwest Territories (Canada). Bulletin of Environmental Contamination and Toxicology, 85(5), 481–485.

    Article  CAS  Google Scholar 

  • Hyvarinen, H., Tyni, P., & Nieminen, P. (2003). Effects of molt, age, and sex on the accumulation of heavy metals in the otter (Lutra lutra) in Finland. Bulletin of Environmental Contamination and Toxicology, 70(2), 278–284.

    Article  CAS  Google Scholar 

  • Ikemoto, T., Kunito, T., Watanabe, I., Yasunaga, G., Baba, N., Miyazaki, N., et al. (2004). Comparison of trace element accumulation in Baikal seals (Pusa sibirica), Caspian seals (Pusa caspica), and northern fur seals (Callorhinus ursinus). Environmental Pollution, 127(1), 83–97.

    Article  CAS  Google Scholar 

  • John, C. (2011). Cadmium in Small Mammals. In Environmental Contaminants in Biota (pp. 627–642): CRC Press.

  • Lamothe, A. R. (1991). Winter food habits and foodchain transfer of metals in wolves (Canis lupus) of the Keewatin District, Northwest Territories. Sudbury: Laurentian University.

    Google Scholar 

  • Liu, Z. P. (2003). Lead poisoning combined with cadmium in sheep and horses in the vicinity of nonferrous metal smelters. Science of the Total Environment, 309(1–3), 117–126.

    Article  CAS  Google Scholar 

  • Lopez-Alonso, M., Miranda, M., Garcia-Partida, P., Cantero, F., Hernandez, J., & Benedito, J. L. (2007). Use of dogs as indicators of metal exposure in rural and urban habitats in NW Spain. Science of the Total Environment, 372(2–3), 668–675.

    Article  CAS  Google Scholar 

  • Lopez Alonso, M., Benedito, J. L., Miranda, M., Castillo, C., Hernandez, J., & Shore, R. F. (2000). Arsenic, cadmium, lead, copper, and zinc in cattle from Galicia, NW Spain. Science of the Total Environment, 246(2–3), 237–248.

    Article  CAS  Google Scholar 

  • Ma, W. (1996). Lead in mammals. In G. H. H. W. N. Beyer & A. W. Redmon-Norwood (Eds.), Environmental Contaminants in Wildlife (pp. 281–296). Boca Raton: Lewis Publisher.

    Google Scholar 

  • Massanyi, P., Tataruch, F., Slameka, J., Toman, R., & Jurik, R. (2003). Accumulation of lead, cadmium, and mercury in liver and kidney of the brown hare (Lepus europaeus) in relation to the season, age, and sex in the West Slovakian Lowland. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 38(7), 1299–1309.

    Article  Google Scholar 

  • McLean, C. M., Koller, C. E., Rodger, J. C., & MacFarlane, G. R. (2009). Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments. Science of the Total Environment, 407(11), 3588–3596.

    Article  CAS  Google Scholar 

  • Medvedev, N., Panichev, N., & Hyvarinen, H. (1997). Levels of heavy metals in seals of Lake Ladoga and the White Sea. Science of the Total Environment, 206(2–3), 95–105.

    CAS  Google Scholar 

  • Miekeley, N., Dias Carneiro, M. T., & da Silveira, C. L. (1998). How reliable are human hair reference intervals for trace elements? Science of the Total Environment, 218(1), 9–17.

    Article  CAS  Google Scholar 

  • Millan, J., Mateo, R., Taggart, M. A., Lopez-Bao, J. V., Viota, M., Monsalve, L., et al. (2008). Levels of heavy metals and metalloids in critically endangered Iberian lynx and other wild carnivores from Southern Spain. Science of the Total Environment, 399(1–3), 193–201.

    Article  CAS  Google Scholar 

  • Milton, A., Cooke, J. A., & Johnson, M. S. (2003). Accumulation of lead, zinc, and cadmium in a wild population of Clethrionomys glareolus from an abandoned lead mine. Archives of Environmental Contamination and Toxicology, 44(3), 405–411.

    Article  CAS  Google Scholar 

  • Muramatsu, Y., & Parr, R. M. (1988). Concentrations of some trace elements in hair, liver, and kidney from autopsy subjects–relationship between hair and internal organs. Science of the Total Environment, 76(1), 29–40.

    Article  CAS  Google Scholar 

  • National Research Council, N. R. C. (1991). Animals as Sentinels of Environmental Health Hazards. Washington: National Academy Press.

    Google Scholar 

  • Nolet, B. A., Dijkstra, V. A., & Heidecke, D. (1994). Cadmium in beavers translocated from the Elbe River to the Rhine/Meuse estuary, and the possible effect on population growth rate. Archives of Environmental Contamination and Toxicology, 27(2), 154–161.

    Article  CAS  Google Scholar 

  • Pereira, R., Pereira, M. L., Ribeiro, R., & Goncalves, F. (2006). Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environmental Pollution, 139(3), 561–575.

    Article  CAS  Google Scholar 

  • Pragst, F., & Balikova, M. A. (2006). State of the art in hair analysis for detection of drug and alcohol abuse. Clinica Chimica Acta, 370(1–2), 17–49.

    Article  CAS  Google Scholar 

  • Puls, R. (1994). Mineral levels in animal health: bibliographies: Sherpa International.

  • Rattner, B. A., & Heath, A. C. (1995). Environmental factors affecting contaminant toxicity in aquatic and terrestrial vertebrates. In B. A. R. D. J. Hoffman, G. A. Burton Jr., & J. Cairns Jr. (Eds.), Handbook of Ecotoxicology (pp. 519–537). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Robillard, S., Beauchamp, G., Paillard, G., & Bélanger, D. (2002). Levels of cadmium, lead, mercury, and 13-caesium in caribou (Rangifer tarandus) tissues from Northern Québec. Arctic, 55(1), 9.

    Google Scholar 

  • Sanchez-Chardi, A., Penarroja-Matutano, C., Ribeiro, C. A., & Nadal, J. (2007). Bioaccumulation of metals and effects of a landfill in small mammals. Part II. The wood mouse, Apodemus sylvaticus. Chemosphere, 70(1), 101–109.

    Article  CAS  Google Scholar 

  • Schramm, K. W. (1997). Hair: a matrix for noninvasive biomonitoring of organic chemicals in mammals. Bulletin of Environmental Contamination and Toxicology, 59(3), 396–402.

    Article  CAS  Google Scholar 

  • Shore, R. F., Casulli, A., Bologov, V., Wienburg, C. L., Afsar, A., Toyne, P., et al. (2001). Organochlorine pesticide, polychlorinated biphenyl, and heavy metal concentrations in wolves (Canis lupus L. 1758) from northwest Russia. Science of the Total Environment, 280(1–3), 45–54.

    Article  CAS  Google Scholar 

  • Shore, R. F., & Douben, P. E. (1994). The ecotoxicological significance of cadmium intake and residues in terrestrial small mammals. Ecotoxicology and Environmental Safety, 29(1), 101–112.

    Article  CAS  Google Scholar 

  • Solaiman, D., Jonah, M. M., Miyazaki, W., Ho, G., & Bhattacharyya, M. H. (2001). Increased metallothionein in mouse liver, kidneys, and duodenum during lactation. Toxicology Science, 60(1), 184–192.

    Article  CAS  Google Scholar 

  • Talmage, S. S., & Walton, B. T. (1991). Small mammals as monitors of environmental contaminants. Reviews of Environmental Contamination and Toxicology, 119, 47–145.

    Article  CAS  Google Scholar 

  • Topolska, K., Sawicka-Kapusta, K., & Cieslik, E. (2004). The effect of contamination of the Krakow region on heavy metals content in the organs of bank voles (Cleithrionomys glareolus, Schreber, 1780). Polish Journal of Environmental Studies, 13, 7.

    Google Scholar 

  • Vermeulen, F., D’Have, H., Mubiana, V. K., Van den Brink, N. W., Blust, R., Bervoets, L., et al. (2009). Relevance of hair and spines of the European hedgehog (Erinaceus europaeus) as biomonitoring tissues for arsenic and metals in relation to blood. Science of the Total Environment, 407(5), 1775–1783.

    Article  CAS  Google Scholar 

  • Webb, M. (1979). The metallothioneins. In M. Webb (Ed.), The Chemistry, Biochemistry, and Biology of Cadmium (pp. 195–266). New York: Elsevier.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank to the Recovery Centers of Wildlife from Xunta de Galicia for supplying the samples and their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hernández-Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Moreno, D., de la Casa Resino, I., Fidalgo, L.E. et al. Noninvasive heavy metal pollution assessment by means of Iberian wolf (Canis lupus signatus) hair from Galicia (NW Spain): a comparison with invasive samples. Environ Monit Assess 185, 10421–10430 (2013). https://doi.org/10.1007/s10661-013-3341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3341-x

Keywords

Navigation