Skip to main content

Advertisement

Log in

Assessing the regional impacts of increased energy maize cultivation on farmland birds

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15 %) were not reproduced in all cases in scenario 2 (increased energy maize by 30 %). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achtziger, R., Stickroth, H., Zieschank, R. (2004). Nachhaltigkeitsindikator für die Artenvielfalt-ein Indikator für den Zustand von Natur und Landschaft in Deutschland. Angewandte Landschaftsökologie Heft 63. Bad Godesberg.

  • Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2006). Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment, 118, 173–182.

    Article  Google Scholar 

  • Anderson, G. Q. A., & Fergusson, M. J. (2006). Energy from biomass in the UK: sources, processes and biodiversity implications. Ibis, 148, 180–183.

    Article  Google Scholar 

  • Anderson, G. Q. A., Haskins, L. R., & Nelson, S. H. (2004). The effects of bioenergy crops on farmland birds in the UK: a review of current knowledge and future predictions. In K. Parris & T. Poincet (Eds.), Biomass and agriculture; sustainability, markets and policies (pp. 199–218). Paris: OECD.

    Google Scholar 

  • Atkinson, P. W., Buckingham, D., & Morris, A. J. (2004). What factors determine where invertebrate-feeding birds forage in dry agricultural grasslands? Ibis, 146(Supplement 2), 99–107.

    Article  Google Scholar 

  • Bastian, A., & Bastian, H.-V. (1996). Das Braunkehlchen. Wiesbaden: Opfer der ausgeräumten Kulturlandschaft.

    Google Scholar 

  • Bauer, H.-G., & Berthold, P. (1996). Die Brutvögel Mitteleuropas. Wiesbaden: Bestand und Gefährdung.

    Google Scholar 

  • Bauer, A., Leonhartsberger, C., Bösch, P., Amon, B., Friedl, A., & Amon, T. (2010). Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technologies and Environmental Policy, 12, 153–161.

    Article  CAS  Google Scholar 

  • Bellamy, P. E., Croxton, P. J., Heard, M. S., Hinsley, S. A., Hulmes, L., Hulmes, S., Nuttall, P., Pywell, R. F., & Rothery, P. (2009). The impact of growing miscanthus for biomass on farmland bird populations. Biomass and Bioenergy, 33(2), 191–199.

    Article  Google Scholar 

  • Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution, 18(4), 182–188.

    Article  Google Scholar 

  • Bezzel, E. (1993). Kompendium der Vögel Mitteleuropas. Wiesbaden: Passeres-Singvögel.

    Google Scholar 

  • Bird Life International (2012). Wild Bird Indices: tracking trends in the condition of habitats. http://www.birdlife.org/action/science/indicators/common_birds.html. Accessed 11 Sept 2012.

  • BMU-Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2007). National strategy on biological diversity.

  • BMU—Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2010). Indikatorenbericht 2010 zur Nationalen Strategie zur biologischen Vielfalt. Berlin.

  • Bradbury, R. B., Hill, R. A., Mason, D. C., Hinsley, S. A., Wilson, J. D., Balzter, H., Anderson, G. Q. A., Whittingham, M. J., Davenport, I. J., & Bellamy, P. E. (2005). Modelling relationships between birds and vegetation structure using airborne LiDAR data: a review with case studies from agricultural and woodland environments. Ibis, 147, 443–452.

    Article  Google Scholar 

  • Butler, S. J., & Gillings, S. (2004). Quantifying the effects of habitat structure on prey detectability and accessibility to farmland birds. Ibis, 146(Supplement 2), 123–130.

    Article  Google Scholar 

  • Butler, S. J., Boccaccio, L., Gregory, R. D., Vorisek, P., & Norris, K. (2010). Quantifying the impact of land-use change to European farmland bird populations. Agriculture, Ecosystems and Environment, 137, 348–357.

    Article  Google Scholar 

  • Chamberlain, D. E., Wilson, A. M., Browne, S. J., & Vickery, J. A. (1999). Effects of habitat type and management on the abundance of skylarks in the breeding season. Journal of Applied Ecology, 36, 856–870.

    Article  Google Scholar 

  • Cornelissen, S., Koper, M., & Deng, Y. Y. (2012). The role of bioenergy in a fully sustainable global energy system. Biomass and Bioenergy, 41, 21–33.

    Article  Google Scholar 

  • Dauber, J., Jones, M. B., & Stout, J. C. (2010). The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy, 2, 289–309.

    Article  Google Scholar 

  • DMK (Deutsches Maiskomitee e.V.) (2012). Bedeutung des Maisanbaues in Deutschland. Statistik. http://www.maiskomitee.de/web/public/Fakten.aspx/Statistik/Deutschland. Accessed 11 Sept 2012.

  • Donald, P. F., Green, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society B, 268, 25–29.

    Article  Google Scholar 

  • Donald, P. F., Sanderson, F. J., Burfield, I. J., & van Bommel, F. P. J. (2006). Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agriculture, Ecosystems and Environment, 116, 189–196.

    Article  Google Scholar 

  • Dziewiaty, K., & Bernardy, P. (2007). Auswirkungen zunehmender Biomassenutzung (EEG) auf die Artenvielfalt-Erarbeitung von Handlungsempfehlungen für den Schutz der Vögel der Agrarlandschaft. Seeburg: Endbericht Nawaros—Vogelschutz.

    Google Scholar 

  • Eglington, S. M., Gill, J. A., Bolton, M., Smart, M. A., Sutherland, W. J., & Watkinson, A. R. (2008). Restoration of wet features for breeding waders on lowland grassland. Journal of Applied Ecology, 45, 305–314.

    Article  Google Scholar 

  • Engel, J., Huth, A., & Frank, K. (2012). Bioenergy production and Skylark (Alauda arvensis) population abundance—a modelling approach for the analysis of land-use change impacts and conservation options. GCB Bioenergy, 4(6), 713–727.

    Article  Google Scholar 

  • Eurostat (2012). Farmland bird index. http://epp.eurostat.ec.europa.eu/portal/page/portal/product_details/dataset?p_product_code=TSIEN170. Accessed 11 Sept 2012.

  • Flade, M., Placher, H., Henne, E., & Anders, K. (2003). Naturschutz in der Agrarlandschaft. Wiebelsheim: Ergebnisse des Schorfheide-Chorin-Projektes.

    Google Scholar 

  • Fritsche, U. R., Dehoust, G., Jenseit, W., Hünecke, K., Rausch, L., Schüler, D., Wiegmann, K., Heinz, A., Hiebel, M., Ising, M., Kabasci, S., Unger, C., Thrän, D., Fröhlich, N., Scholwin, F., Reinhardt, G., Gärtner, S., Patyk, A., Baur, F., Bemmann, U., Gross, B., Heib, M., Ziegler, C., Flake, M., Schmehl, M., & Simon, S. (2004). Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse. Darmstadt: Öko-Institut e.V.-Institute of Applied Ecology.

    Google Scholar 

  • Fuchs, S. & Matthews, A. (2008). Data collection avifauna. Unpublished.

  • Fuchs, S. & Stein-Bachinger, K. (2008). Nature conservation in organic agriculture—a manual for arable organic farming in north-east Germany. www.bfn.de.

  • Furness, R. W. & Greenwood, J. J. D. (1993). Birds as monitors of environmental change. London.

  • Gevers, J., Høye, T. T., Topping, C. J., Glemnitz, M., & Schröder, B. (2011). Biodiversity and the mitigation of climate change through bioenergy: impacts of increased maize cultivation on farmland wildlife. GCB Bioenergy, 3, 472–482.

    Article  Google Scholar 

  • Gregory, R. D., Vořišek, P., Noble, D. G., Van Strien, A., Klvaňová, A., Eaton, M., Gmelig Meyling, A. W., Joys, A., Foppen, R. P. B., & Burfileld, I. J. (2008). The generation and use of bird population indicators in Europe. Bird Conservation International, 18, S223–S244.

    Article  Google Scholar 

  • Guerrero, I., Morales, M. B., Oñate, J. J., Geiger, F., Berendse, F., De Snoo, G., Eggers, S., Pärt, T., Bengtsson, J., Clement, L. W., Weisser, W. W., Olszewski, A., Ceryngier, P., Hawro, V., Liira, J., Aavik, T., Fischer, C., Flohre, A., Thies, C., & Tscharntke, T. (2012). Response of ground-nesting farmland birds to agricultural intensification across Europe: landscape and field level management factors. Biological Conservation, 152, 74–80.

    Article  Google Scholar 

  • Gustavsson, L., Holmberg, J., Dornburg, V., Sathre, R., Eggers, T., Mahapatra, K. & Marland, G. (2007). Using biomass for climate change mitigation and oil use reduction. Energy Policy, 35, 5671–5691

    Google Scholar 

  • Hoffmann. J., Berger, G., Wiegand, I., Pfeffer, H., Kiesel, J. Ehlert, F. (2012). Bewertung und Verbesserung der Biodiversität leistungsfähiger Nutzungssysteme in Ackerbaugebieten unter Nutzung von Indikatorvogelarten, Report from the Julius Kühn-Institut, 163, Federal Research Centre for Cultivated Plants, Braunschweig, Germany.

  • Huston, M. A., & Marland, G. (2003). Carbon management and biodiversity. Journal of Environmental Management, 67, 77–86.

    Article  Google Scholar 

  • Jackson, A. L. R. (2011). Renewable energy vs. biodiversity: policy conflicts and the future of nature conservation. Global Environmental Change, 21(4), 1195–1208.

    Article  Google Scholar 

  • Kivelitz, H., & Lütke Entrup, N. (2010). Prägt der Maisanbau immer starker das Landschaftsbild? Acker+Plus, 10, 50–56.

    Google Scholar 

  • Kooiker, G. & Buckow, C. V. (1997). Der Kiebitz: Flugkünstler im offenen Land. Wiesbaden.

  • Latus, C., Schultz, A., & Kujawa, K. (2004). Occurrence of the Red-backed Shrike (Lanius collurio) depends on natural factors and mode of land use in the Quillow catchment, Germany. Biological Letters, 41(2), 87–93.

    Google Scholar 

  • Meyer, B. C., Kerstin Mammen, K., & Grabaum, R. (2007). A spatially explicit model for integrating species assessments into landscape planning as exemplified by the corn bunting (Emberiza calandra). Journal for Nature Conservation, 15, 94–108.

    Article  Google Scholar 

  • Milsom, T. P., Hart, J. D., Parkin, W. K., & Peel, S. (2002). Management of coastal grazing marshes for breeding waders: the importance of surface topography and wetness. Biological Conservation, 103, 199–207.

    Article  Google Scholar 

  • Pätzold, R. (1994). Die Lerchen der Welt. Magdeburg.

  • PECBMS. (2009). The state of Europe’s common birds 2008. Prague: CSO/RSPB.

    Google Scholar 

  • Petersen, J. E. (2008). Energy production with agricultural biomass: environmental implications and analytical challenges. European Review of Agricultural Economics, 35, 385–408.

    Article  Google Scholar 

  • Ryslavy, T., & Mädlow, W. (2008). Rote Liste und Liste der Brutvögel des Landes Brandenburg 2008. Naturschutz und Landschaftspflege in Brandenburg, 17, 3–104.

    Google Scholar 

  • Schlaepfer, M. A., Runge, M. C., & Sherman, P. W. (2002). Ecological and evolutionary traps. Trends in Ecology & Evolution, 17(10), 474–480.

    Article  Google Scholar 

  • Schmidt, R., & Diemann, R. (1981). Erläuterung zur Mittelmaßstäbigen Landwirtschaftlichen Standortkartierung (MMK), Akademie der Landwirtschaftswissenschaften der DDR. Eberswalde: Bereich Bodenkunde/Fernerkundung.

    Google Scholar 

  • Schümann, K., Engel, J., Frank, K., Huth, A., Luick, R., Wagner, F. (2010). Naturschutzstandards für den Biomasseanbau. Ergebnisse des gleichnamigen F + E-Vorhabens (FKZ 3507 82–150). Bonn–Bad Godesberg: Bundesamt für Naturschutz (BfN).

  • Toepfer, S., & Stubbe, M. (2001). Territory density of the Skylark (Alauda arvensis) in relation to field vegetation in central Germany. Journal of Ornithology, 142, 184–194.

    Article  Google Scholar 

  • Topping, C. J., Hansen, T. S., Jensen, T. S., Jepsen, J. U., Nikolajsen, F., & Odderskær, P. (2003). ALMaSS, an agent-based model for animals in temperate European landscapes. Ecological Modelling, 167, 65–82.

    Article  Google Scholar 

  • Vetter, A., Strauß, C., Nehring, A., Herrmann, C., Willms, M., Glemnitz, M. (2010): EVA sucht geeignete Anbausysteme. Biogas Journal. pp 14–17.

  • Whittingham, M. J., & Evans, K. L. (2004). The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis, 146(Supplement 2), 210–220.

    Article  Google Scholar 

  • Wilson, J. D., Evans, J., Browne, S. J., & King, J. R. (1997). Territory distribution and breeding success of skylarks Alauda arvensis on organic and intensive farmland in Southern England. Journal of Applied Ecology, 34, 1462–1478.

    Article  Google Scholar 

  • Wilson, J. D., Whittingham, M. J., & Bradbury, R. B. (2005). The management of crop structure: a general approach to reversing the impacts of agricultural intensification on birds? Ibis, 147, 453–463.

    Article  Google Scholar 

  • Wretenberg, J., Lindström, Å., Svensson, S., Thierfelder, T., & Pärt, T. (2006). Population trends of farmland birds in Sweden and England: similar trends but different patterns of agricultural intensification. Journal of Applied Ecology, 43, 1110–1120.

    Article  Google Scholar 

  • Wretenberg, J., Lindström, Å., Svensson, S., & Pärt, T. (2007). Linking agricultural policies to population trends of Swedish farmland birds in different agricultural regions. Journal of Applied Ecology, 44, 933–941.

    Article  Google Scholar 

  • Zeijts, H. van, Overmars, K., Bilt, W. van der, Schulp, N., Notenboom, J., Westhoek, H., Helming, J., Terluin, I., Janssen, S. (2011). Greening the common agricultural policy: impacts on farmland biodiversity on an EU scale. The Hague: PBL Netherlands Environmental Assessment Agency. PBL report 500136005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoline Brandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, K., Glemnitz, M. Assessing the regional impacts of increased energy maize cultivation on farmland birds. Environ Monit Assess 186, 679–697 (2014). https://doi.org/10.1007/s10661-013-3407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3407-9

Keywords

Navigation