Skip to main content
Log in

Natural and anthropogenic controls on sediment composition of an arid coastal environment: Sharm Obhur, Red Sea, Saudi Arabia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 21 November 2013

Abstract

The present study investigated the natural and anthropogenic processes that control the composition of the bottom sediments of Sharm Obhur, Red Sea. Mineralogical analysis using XRD indicated that the sediments consist of carbonate and non-carbonate minerals. Elemental interrelationships allowed differentiating two groups of elements of different sources and origin. Elements that are in the same group are positively correlated, while they correlate negatively with elements of the other group. The first group includes silicon, Al, Fe, Mn, Mg, vanadium (V), chromium (Cr), Co, Ni, Cu, and Zn, whereas the other group includes Ca, Sr, and CaCO3. The highest concentration levels of the first group and the highest content of non-carbonate minerals were obtained from the sediments near the head of the sharm (zone A), whereas the sediments near the mouth of the sharm (zone B) yielded high concentrations of second group and carbonate minerals. Metal enrichment and contamination factors and pollution load index were calculated. The values of these indices differentiate two groups of metals: lithogenic and non-lithogenic. Except for lead (Pb) at one sampling site, metals in zone A sediments are of lithogenic source, supplied to the sharm either naturally by aeolian transportation and through Wadi Al-Kuraa'a during rare but major floods or by human activities such as dumping and shore protection. Non-lithogenic Cr, Pb, V, and Mn were documented from some sampling sites in zone B, and their occurrences are related to waste disposal and fossil fuel combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, P. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediment from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Abu-Hilal, A. H. (1987). Distribution of trace elements in nearshore surface sediments from the Jordan Gulf of Aqaba (Red Sea). Marine Pollution Bulletin, 18, 190–193.

    Article  CAS  Google Scholar 

  • Abu-Zied, R. H., Basaham, A. S., El Sayed M. A. (2013). Effect of municipal wastewaters on surficial sediment geochemistry and benthic foraminifera of two Red Sea coastal inlets, Jeddah, Saudi Arabia. Journal of Environmental Earth Sciences, 68(2), 451–469.

    Google Scholar 

  • Ahmad, F., & Sultan, S. A. R. (1992). The effect of meteorological forcing on the flushing of Shuaiba lagoon on the Eastern Coast of the Red Sea. Journal King Abdulaziz University Marine Science, 3, 3–9.

    Article  Google Scholar 

  • Ahmed, F., Bibi, M. H., Fukushima, T., Seto, K., & Ishiga, H. (2011). Recent sedimentary environment of coastal lagoon in southwestern Japan: evidence from major and trace elements. Environmental Monitoring and Assessment, 173(1–4), 167–180.

    Article  CAS  Google Scholar 

  • Alagarsamy, R. (2006). Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India. Journal Estuarine, Coastal and Shelf Science, 67, 333–339.

    Article  CAS  Google Scholar 

  • Albarakati, A. M. A. (2009). Water exchange of Sharm Obhur, Jeddah, Red Sea. Journal King Abdulaziz University Marine Science, 20, 49–58.

    Article  Google Scholar 

  • Al-Najjar, T., Rasheed, M., Ababneh, Z., Ababneh, A., & Al-Omary, H. (2011). Heavy metals pollution in sediment cores from the Gulf of Aqaba, Red Sea. Natural Science, 3(9), 775–782.

    Article  CAS  Google Scholar 

  • Amorosi, A., & Sammartino, I. (2007). Influence of sediment provenance on background values of potentially toxic metals from near-surface sediments of Po coastal plain (Italy). The International Journal of Earth Sciences, 96, 389–396.

    Article  CAS  Google Scholar 

  • Amorosi, A., Gentineo, M. C., Dinelli, E., Lucchini, F., & Tateo, F. (2002). Geochemical variations as indicators of provenance-changes in Late Quaternary deposits of SE Po Plain. Sedimentary Geology, 151, 273–292.

    Article  CAS  Google Scholar 

  • Badr, N. B. E., El-Fiky, A. A., Mostafa, A. R., & Al-Mur, B. A. (2009). Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environmental Monitoring and Assessment, 155, 509–526.

    Article  CAS  Google Scholar 

  • Basaham, A. S. (1998). Distribution and behaviour of some heavy metals in the surface sediments of Al-Arbaeen lagoon, Jeddah, Red Sea coast. Journal King Abdulaziz University Earth Science, 10, 59–71.

    Article  CAS  Google Scholar 

  • Basaham, A. S. (2008). Mineralogical and chemical composition of the mud fraction from the surface sediments of Al-Kharrar, a Red Sea coastal lagoon. Oceanologia, 50, 557–575.

    Google Scholar 

  • Basaham, A. S., Rifaat, A. E., El Sayed, M. A., & Rasul, N. (2006). Sharm Obhur: environmental consequences of 20 years of uncontrolled coastal urbanization. Journal King Abdulaziz University Marine Science, 17, 129–152.

    Article  Google Scholar 

  • Behairy, A. K. A., El Sayed, M. K., & Durgaprasada Rao, N. V. N. (1985). Eolian dust in the coastal area north of Jeddah, Saudi Arabia. Journal of Arid Environments, 8, 89–98.

    Google Scholar 

  • Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76, 89–131.

    Article  CAS  Google Scholar 

  • Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell, A. A., Di Leo, A., & Maci, A. (2006). Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). Marine Chemistry, 99, 227–235.

    Article  CAS  Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G., & Painho, M. (2005). Assessing heavy metal contamination in Sado estuary sediment: an index analysis approach. Ecology Industry, 5, 151–169.

    CAS  Google Scholar 

  • Calvert, S. E. (1976). The mineralogy and geochemistry of near-shore sediments. In J. P. Riley & R. Chester (Eds.), Chemical oceanography (p. 280). New York: Academic.

    Google Scholar 

  • Chen, C. T., & Kandasamy, S. (2008). Evaluation of elemental enrichments in the surface sediments off southwestern Taiwan. Environmental Geology, 54, 1333–1346.

    Article  CAS  Google Scholar 

  • El Sayed, M. A., & Basaham, A. S. (2004). Speciation and mobility of some heavy metals in the coastal sediments of Jeddah, Eastern Red Sea. Journal of Environmental Sciences, 27, 57–92.

    Google Scholar 

  • El Sayed, M. A., Basaham, A. S., & Gheith, A. M. (2002). Distribution and geochemistry of trace elements in central Red Sea coastal sediments. International Journal Environmental Studies, 59(1), 1–31.

    Google Scholar 

  • El-Rayis, O. A., & Moammar, M. O. (1998). Environmental conditions of two Red Sea coastal lagoons in Jeddah: 1. Hydrochemistry. Journal King Abdulaziz University Earth Science, 9, 31–47.

    Google Scholar 

  • Ergin, M., Kazan, B., & Ediger, V. (1996). Source and depositional controls on heavy metal distribution in marine sediments of the Gulf of Iskendrun, Eastern Mediterranean. Marine Geology, 133, 223–239.

    Article  CAS  Google Scholar 

  • Esen, E., Kucuksezgin, F., & Uluturhan, E. (2010). Assessment of trace metal pollution in surface sediments of Nemrut Bay, Aegean Sea. Environmental Monitoring and Assessment, 160(1–4), 257–266.

    Article  CAS  Google Scholar 

  • Flügel, E. (2004). Microfacies of carbonate rocks. Analysis, interpretation and application. Berlin: Springer-Verlag.

    Google Scholar 

  • Förstner, U. (1989). Contaminated sediments. Lecture Notes on Earth Sciences. London: Springer-Verlag.

  • Frignani, M., Bellucci, L. G., Langgone, L., & Muntau, H. (1997). Metal fluxes to the sediments of the northern Venice Lagoon. Marine Chemistry, 58, 275–292.

    Article  CAS  Google Scholar 

  • Furuyama, K., Hari, K. R., & Santosh, M. (2001). Crystallization history of primitive Deccan basalt from Pavagadh Hill, Gujarat, western India. Gondwana Research, 4, 427–436.

    Article  CAS  Google Scholar 

  • Garver, J. I., & Scott, T. J. (1995). Trace elements in shale as indicators of crustal provenance and terrane accretion in the Southern Canadian Cordillera. Geological Society of America Bulletin, 107, 440–453.

    Article  CAS  Google Scholar 

  • Garver, J. I., Royce, P. R., & Smick, T. A. (1996). Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100–106.

    CAS  Google Scholar 

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hardy, R., & Tucker, M. (1988). X-ray powder diffraction of sediments. In M. Tucker (Ed.), Techniques in sedimentology (pp. 191–228). Oxford: Blackwell.

    Google Scholar 

  • Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: evidence for atmosphere contamination. Science of the Total Environment, 312, 195–210.

    Article  CAS  Google Scholar 

  • Heimbürger, L. E., Cossa, D., Thibodeau, B., Khripounoff, A., Mas, V., Chiffoleau, J. F., Schmidt, S., & Migon, C. (2012). Natural and anthropogenic trace metals in sediments of the Ligurian Sea (Northwestern Mediterranean). Chemical Geology, 291, 141–151.

    Article  Google Scholar 

  • Kieffer, B., Arndt, N., Lapierre, H., Bastien, F., Bosch, D., Pecher, A., Yirgu, G., Ayalew, D., Weis, D., Jerram, A. D., Keller, F., & Meugniot, C. (2004). Flood and shield basalts from Ethiopia: magmas from the African superswell. Journal of Petrology, 45, 793–834.

    Article  CAS  Google Scholar 

  • Mason, B., & Moore, C. B. (1982). Principles of geochemistry. New York: Wiley.

    Google Scholar 

  • Morrison, R. J., Peshut, P. J., & Lasorsa, B. K. (2010). Elemental composition and mineralogical characteristics of coastal marine sediments of Tutuila, American Samoa. Marine Pollution Bulletin, 60, 925–930.

    Article  CAS  Google Scholar 

  • Nikolaidis, C., Zafiriadis, I., Mathioudakis, V., et al. (2010). Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki region, NE Greece. Bulletin of Environmental Contamination and Toxicology, 85(3), 307–312.

    Article  CAS  Google Scholar 

  • Nolting, R. F., Helder, W., Baar, H. J. W., & Gerringa, L. J. A. (1999). Contrasting behavior of trace metals in the Scheldt estuary in 1978 compared to recent years. Journal of Sea Research, 42, 275–290.

    Article  CAS  Google Scholar 

  • Pan, K., Lee, O. O., Qian, P., & Wang, W. (2011). Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Marine Pollution Bulletin, 62, 1140–1146.

    Article  CAS  Google Scholar 

  • Pekey, H., Karakaş, D., Ayberk, S., Tolun, L., & Bakoğlu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48, 946–953.

    Article  CAS  Google Scholar 

  • Preda, M., & Cox, M. E. (2005). Chemical and mineralogical composition of marine sediments, and relation to their source and transport, Gulf of Carpentaria, Northern Australia. The Journal of Marine Systems, 53, 169–186.

    Article  Google Scholar 

  • Prohic, E., & Yuracic, M. (1989). Heavy metals in sediments—problems concerning determination of anthropogenic influence. Study in the Krka river estuary, eastern Adriatic Coast, Yugoslavia. Environmental Geology and Water Sciences, 13, 145–151.

    Article  CAS  Google Scholar 

  • Radenac, G., Fichet, D., & Miramand, P. (2001). Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Marine Environmental Research, 51, 151–166.

    Article  CAS  Google Scholar 

  • Rifaat, A. E. (1996). Metal composition of recent carbonate sediments off Jeddah, Kingdom of Saudi Arabia. Journal King Abdulaziz University, Marine Science, 7, 133–138.

    Google Scholar 

  • Rollinson, H. (1993). Using geochemical data: evaluation, presentation, interpretation. Longman, White Plains

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980.

    Article  CAS  Google Scholar 

  • Santos, I. R., Silva-Filho, E. V., Schaefer, C. E., Albuquerque-Filho, M. R., & Campos, L. S. (2005). Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin, 50, 185–194.

    Article  CAS  Google Scholar 

  • Savvides, C., Papadopouluos, A., Haralambous, K. J., & Loizidou, M. (1995). Sea sediments contaminated with heavy metals: metal speciation and removal. Water Science and Technology, 32(9–10), 65–73.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Carlton: Blackwell.

    Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffney, D. W. (1980). Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Wissenschaft Meeresunters, 33, 566–572.

    Article  Google Scholar 

  • Tuncel, S. G., Tugrul, S., & Topal, T. (2007). A case study on trace metals in surface sediments and dissolved inorganic nutrients in surface water of Oludeniz Lagoon-Mediterranean, Turkey. Water Research, 41, 365–372.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth's crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • Turki, A. J. (2007). Metal speciation (Cd, Cu, Pb and Zn) in sediments from Al Shabab Lagoon, Jeddah, Saudi Arabia. Journal King Abdulaziz University Marine Science, 18, 191–210.

    Article  Google Scholar 

  • Zimmermann, U., Bahlburg, H., & Esteban, S. B. (2003). Depositional history of the Ordovician Famatina Basin (Western Gondwana; NW Argentina). In G. L. Albanesi, M. S. Beresi, & S. H. Peralta (Eds.), Ordovician from the Andes (pp. 487–493). Córdoba: Comununicarte.

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under the grant no. 282/150/1431. The authors, therefore, acknowledge and thank the DSR technical and financial support. The authors are indebted to the anonymous reviewer and the editor for their constructive comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Ghandour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghandour, I.M., Basaham, S., Al-Washmi, A. et al. Natural and anthropogenic controls on sediment composition of an arid coastal environment: Sharm Obhur, Red Sea, Saudi Arabia. Environ Monit Assess 186, 1465–1484 (2014). https://doi.org/10.1007/s10661-013-3467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3467-x

Keywords

Navigation