Skip to main content

Advertisement

Log in

Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants—Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambika, S. R., Poornima, S., Palaniraj, R., Sati, S. C., & Narwal, S. S. (2003). Allelopathic plants. 10. Lantana camara L. Allelopathy Journal, 12, 147–162.

    Google Scholar 

  • Appel, H. M. (1993). Phenolics in ecological interactions: the importance of oxidation. Journal of Chemical Ecology, 19, 1521–1552.

    Article  CAS  Google Scholar 

  • Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., & Vivanco, J. M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301, 1377–1380.

    Article  CAS  Google Scholar 

  • Baker, H. G. (1974). The evolution of weeds. Annual Review of Ecology and Systematics, 5, 1–24.

    Article  Google Scholar 

  • Barritt, A. R., & Facelli, J. M. (2001). Effect of Casuarina pauper litter and grove soil on emergence and growth of understorey species in arid lands of South Australia. Journal of Arid Environments, 49, 569–579.

    Article  Google Scholar 

  • Batish, D. R., Lavanya, K., Singh, H. P., & Kohli, R. K. (2007a). Root-mediated allelopathic interference of nettle-leaved goosefoot (Chenopodium murale) on wheat (Triticum aestivum). Journal of Agronomy and Crop Science, 193, 37–44.

    Article  CAS  Google Scholar 

  • Batish, D. R., Lavanya, K., Singh, H. P., & Kohli, R. K. (2007b). Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation, 51, 119–128.

    Article  CAS  Google Scholar 

  • Batish, D. R., Kaur, S., Singh, H. P., & Kohli, R. K. (2009). Nature of interference potential of leaf debris of Ageratum conyzoides. Plant Growth Regulation, 57, 137–144.

    Article  CAS  Google Scholar 

  • Blum, U., Shafer, S. R., & Lehman, M. E. (1999). Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Critical Reviews in Plant Sciences, 18, 673–693.

    Article  CAS  Google Scholar 

  • Dejong, T. J., & Klinkhamer, P. G. L. (1985). The negative effects of litter of parent plants of Cirsium vulgare to their offsprings: autotoxicity or immobilization? Oecologia, 65, 153–166.

    Article  Google Scholar 

  • Dobhal, P. K., Kohli, R. K., & Batish, D. R. (2010). Evaluation of the impact of Lantana camara L. invasion on four major woody shrubs, along Nayar River of Pauri Garhwal in Uttarakhand Himalaya. International Journal of Biodiversity and Conservation, 2, 155–161.

    Google Scholar 

  • Dobhal, P. K., Kohli, R. K., & Batish, D. R. (2011). Impact of Lantana camara L. invasion on riparian vegetation of Nayar region Garhwal Himalayas (Uttarakhand, India). Journal of Ecology and the Natural Environment, 3, 11–22.

    Google Scholar 

  • Duggin, J. A., & Gentle, C. B. (1998). Experimental evidence on the importance of disturbance intensity for invasion of Lantana camara L. in dry rainforest-open forest ecotones in north-eastern NSW, Australia. Forest Ecology & Management, 109, 279–292.

    Article  Google Scholar 

  • Facelli, J. M. (1994). Multiple indirect effects of plant litter affect the establishment of woody seedlings in old field. Ecology, 75, 1727–1735.

    Article  Google Scholar 

  • Facelli, J. M., & Pickett, S. T. A. (1991). Plant litter: its dynamics and effects on plant community structure. Botanical Review, 57, 1–32.

    Article  Google Scholar 

  • Frank, D. A., & McNaughton, S. J. (1991). Stability increases with diversity in plant communities: empirical evidence from the 1988 Yellowstone drought. Oikos, 62, 360–362.

    Article  Google Scholar 

  • Gantayet, P. K., Lemka, K. C., & Padhy, B. (2011). Vegetative growth and yield response of niger (Guizotia abyssinica) to leaf-litter dust of Lantana camara. The Bioscan, 6(2), 207–210.

    Google Scholar 

  • Gentle, C. B., & Duggin, J. A. (1997). Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecology, 132, 85–95.

    Article  Google Scholar 

  • Heirro, J. L., & Callaway, R. M. (2003). Allelopathy and exotic plant invasion. Plant and Soil, 256, 29–39.

    Article  Google Scholar 

  • Hill, M. O. (1973). Diversity and its evenness, a unifying notation and its consequences. Ecology, 54, 427–432.

    Article  Google Scholar 

  • Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). The world’s worst weeds: distribution and biology. Honolulu, USA: The University Press of Hawaii.

    Google Scholar 

  • Keane, R. M., & Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution, 17, 164–170.

    Article  Google Scholar 

  • Kohli, R. K., Dogra, K. S., Batish, D. R., & Singh, H. P. (2004). Impact of invasive plants on the structure and composition of natural vegetation of northwestern Indian Himalayas. Weed Technology, 18, 1296–1300.

    Article  Google Scholar 

  • Ludwig, J. A., & Reynolds, J. F. (1988). Statistical ecology, a primer on methods and computing. New York: Wiley.

    Google Scholar 

  • Mack, R., Simberloff, D., Lonsdale, M., Evans, H., Clout, M., & Bazzaz, F. (2000). Biotic invasions: cause, epidemiology, global consequences, and control. Ecological Applications, 10, 689–710.

    Article  Google Scholar 

  • Mahmood, K., Mallik, K., Sheikh, K. H., & Lodhi, M. A. K. (1989). Allelopathy in saline agricultural land: vegetation successional changes and patch dynamics. Journal of Chemical Ecology, 15, 565–579.

    Article  CAS  Google Scholar 

  • Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton. In A. A. Buzzati-Traverso (Ed.), Perspective in marine biology (pp. 323–347). Berkeley, USA: The University of California Press.

    Google Scholar 

  • Misra, B. (1968). Ecology work book. New Delhi: Oxford and IBH Company.

    Google Scholar 

  • Pimentel, D., Mcnair, S., Janecka, J., Wightman, J., Simmonds, C., O’Connell, C., et al. (2001). Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosystems & Environment, 84, 1–20.

    Article  Google Scholar 

  • Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien invasive species in the United States. Ecological Economics, 52, 273–288.

    Article  Google Scholar 

  • Prati, D., & Bossdorf, O. (2004). Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). American Journal of Botany, 91, 285–288.

    Article  Google Scholar 

  • Pyšek, P., & Prach, K. (2003). Research into plant invasions in a crossroads region: history and focus. Biological Invasions, 5, 337–348.

    Article  Google Scholar 

  • Rejmánek, M., & Richardson, D. M. (1996). What attributes make some plant species more invasive? Ecology, 77, 1655–1661.

    Article  Google Scholar 

  • Ridenour, W. M., & Callaway, R. M. (2001). The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia, 126, 444–450.

    Article  Google Scholar 

  • Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., et al. (2001). The population biology of invasive species. Annual Review of Ecology and Systematics, 32, 305–332.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. Urbana, Illinois: University of Illinois Press.

    Google Scholar 

  • Sharma, G. P., & Raghubanshi, A. S. (2007). Effect of Lantana camara cover on local depletion of tree population in the Vindhyan tropical dry deciduous forests of India. Applied Ecology and Environmental Research, 5, 109–121.

    Google Scholar 

  • Sharma, G. P., & Raghubanshi, A. S. (2010). How lantana invades dry deciduous forest: a case study from Vindhyan highlands, India. Tropical Ecology, 51(2S), 305–316.

    Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Swain, T., & Hillis, W. E. (1959). The phenolic constituents of Prunus domestica I. The quantitative analysis of constituents. Journal of the Science of Food and Agriculture, 10, 63–68.

    Article  CAS  Google Scholar 

  • Thijs, H., Shann, J. R., & Weidenhamer, J. D. (1994). The effect of phytotoxins on competitive outcome in a model system. Ecology, 75, 1959–1964.

    Article  Google Scholar 

  • Thompson, K., Hodgson, J. G., Grime, J. P., & Burke, M. J. W. (2001). Plant traits and temporal scale: evidence from a five-year invasion experiment using native species. Journal of Ecology, 89, 1054–1060.

    Article  Google Scholar 

  • Vitousek, P. M., D’Antonio, C. M., Loope, L. L., & Westbrooks, R. (1996). Biological invasions as global environmental change. American Scientist, 84, 218–228.

    Google Scholar 

  • Xuan, T. D., Tawata, S., Khanh, T. D., & Chung, I. M. (2005). Decomposition of allelopathic plants in soil. Journal of Agronomy and Crop Science, 191, 162–171.

    Article  Google Scholar 

Download references

Acknowledgments

Anjana Negi is thankful to University Grants Commission, India, for financial support in the form of a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harminder Pal Singh or Daizy R. Batish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.P., Batish, D.R., Dogra, K.S. et al. Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India. Environ Monit Assess 186, 3379–3389 (2014). https://doi.org/10.1007/s10661-014-3624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3624-x

Keywords

Navigation