Skip to main content

Advertisement

Log in

Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Banat, I. M. (1995). Bioproduction and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 51, 1–12.

    Article  CAS  Google Scholar 

  • Bao, M., Mu, B., & Wang, X. (2003). Metabolic process of organisms used in oil recovery. Chem. Res. Appl., 15, 555–557.

    CAS  Google Scholar 

  • Baveye, P., Vandevivere, P., Hoyle, B. L., DeLeo, P. C., Sanchez, D., & Lozada, D. (1998). Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit Rev Environ Sci Tech, 28, 123–191.

    Article  CAS  Google Scholar 

  • Bundy, J. G., Paton, G. I., & Campbell, C. D. (2002). Microbial communities in different soil types do not converge after diesel contamination. Applied Microbiology, 92, 276–288.

    Article  CAS  Google Scholar 

  • Chandankere, R., Yao, J., Choi, M. M. F., Masakorala, K., & Chan, Y. (2013). An efficient biosurfactant-producing and crude-oil emulsifying bacterium Bacillus methylotrophicus USTBa isolated from petroleum reservoir. Biochemical Engineering Journal, 74, 46–53.

    Article  CAS  Google Scholar 

  • Chandran, P., & Das, N. (2010). Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. International Journal of Engineering, Science and Technology, 2, 6942–6953.

    Google Scholar 

  • Fountain, J. C., Klimek, A., Beikirch, M. G., & Middleton, T. M. (1991). The use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer. Haz. Mater., 28(3), 295.

    Article  CAS  Google Scholar 

  • Francy, D. S., Thomas, J. M., Raymond, R. L., & Ward, C. H. (1991). Emulsification of hydrocarbons by subsurface bacteria. Journal of Industrial Microbiology, 8, 237–246.

    Article  CAS  Google Scholar 

  • Gallego, J. R., Loredo, J., Llamas, J. F., Va’zquez, F., & Sa’nchez, J. (2001). Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 12, 325–335.

    Article  CAS  Google Scholar 

  • Holliger, C. (1995). The anaerobic microbiology and biotreatment of chlorinated ethenes. Current Opinion in Biotechnology, 6, 347–351.

    Article  CAS  Google Scholar 

  • Ibrahim, M. L., Ijah, U. J. J., Manga, S. B., Bilbis, L. S., & Umar, S. (2013). Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. International Biodeterioration & Biodegradation, 81, 28–34.

    Article  CAS  Google Scholar 

  • Kaplan, C. W., & Kitts, C. L. (2004). Bacterial succession in a petroleum land treatment unit. Applied and Environmental Microbiology, 70, 1777–1786.

    Article  CAS  Google Scholar 

  • Kermanshahi, P. A., Karamanev, D., & Margaritis, A. (2005). Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor. Water Research, 39, 3704–3714.

    Article  Google Scholar 

  • Kumari, B., Singh, S. N., & Singh, D. P. (2012). Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochemistry, 47, 2463–2471.

    Article  CAS  Google Scholar 

  • Lai, C. C., Huang, Y. C., Wei, Y. H., & Chang, J. S. (2009). Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. Journal of Hazardous Materials, 167, 609–614.

    Article  CAS  Google Scholar 

  • Langwaldt, J. H., & Puhakka, J. A. (2000). On-site biological remediation of contaminated groundwater: a review. Environmental Pollution, 107, 187–197.

    Article  CAS  Google Scholar 

  • Lesage, S., Hao, X., & Kent, S. N. (1997). Distinguishing natural hydrocarbons from anthropogenic contamination in groundwater. Groundwater, 35(1), 149–160.

    Article  CAS  Google Scholar 

  • Mackay, D. M., & Cherry, J. A. (1989). Ground water contamination: pump-and-treat remediation. Environmental Science and Technology, 23(6), 630.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., & Eftekhari, F. (2003). Remediation with surfactant foam of PCP contaminated soil. Engineering Geology, 70, 269–279.

    Article  Google Scholar 

  • Mulligan, C. N., & Wang, S. (2006). Remediation of a heavy metal contaminated soil by a rhamnolipid foam. Engineering Geology, 85, 75–81.

    Article  Google Scholar 

  • Olivera, N. L., Nievas, M. L., Lozada, M., Prado, G. D., Dionisi, H. M., & Sineriz, F. (2009). Isolation and characterization of biosurfactant -producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Research in Microbiology, 160, 19–26.

    Article  CAS  Google Scholar 

  • Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology, 102, 3366–3372.

    Article  CAS  Google Scholar 

  • Urum, K., Pekdemir, T., & Gopur, M. (2003). Optimum conditions for washing of crude oil contaminated soil with biosurfactant solutions. Transactions. Institute of Chemical Engineers, 81B, 203–209.

    Google Scholar 

  • Vazquez, D., & Mansoori, G. A. (2000). Identification and measurement of petroleum precipitates. Petro Sci Engineer, 26, 49–55.

    Article  CAS  Google Scholar 

  • Wang, Z. D., Li, K., & Fingas, M. (2002). Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques. Journal of Chromatography A, 971(1–2), 173–184.

    CAS  Google Scholar 

  • Zhang, X., & Xiang, T. (2010). Review on microbial enhanced oil recovery technology and development in China. Int. J. Pet. Sci. Technol, 4, 61–80.

    Google Scholar 

  • Zhang, X., Li, M., & Xiang, T. (2010). Genetic modification of MEOR bacterium Bacillus licheniformis H strain by low energy ion beam irradiation. Open Biotechnol, 4, 14–17.

    Article  CAS  Google Scholar 

  • Zhang, X. S., Xu, D. J., Zhu, C. Y., Lundaa, T., & Scherr, K. E. (2012). Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chemical Engineering Journal, 209, 138–146.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China No: 41302185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Wang, H., Chen, X. et al. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater. Environ Monit Assess 186, 4581–4589 (2014). https://doi.org/10.1007/s10661-014-3721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3721-x

Keywords

Navigation