Skip to main content

Advertisement

Log in

Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ∼0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe > Mn > Cr > Zn > Ni > Cu > Co > Pb > Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abanuz, G. Y. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99(1), 82–92.

    Article  Google Scholar 

  • Ackermann, F. (1980). A procedure for correcting the grain size effects in heavy metal analyses of estuarine and coastal sediments. Environmental Technology Letters, 1, 518–527.

    Article  CAS  Google Scholar 

  • Ansari, A. A., Singh, I. B., & Tobschall, H. J. (2000). Importance of geomorphology and sedimentation process for metal dispersion in sediments and soils of the Ganga plain: identification of geochemical domains. Chemical Geology, 162(3–4), 245–266.

    Article  CAS  Google Scholar 

  • Biksham, G., Subramanian, V., & Griken, R. V. (1991). Heavy metal distribution in the Godavari river basin. Environmental Geology and Water Sciences, 17, 117–126.

    Article  CAS  Google Scholar 

  • Birch, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In C. D. Woodcoffe & R. A. Furness (Eds.), Coastal GIS 2003. Australia: Wollongong University Papers in Center for Maritime Policy.

    Google Scholar 

  • Bjerre, G. K., & Schierup, H. (1985). Uptake of six heavy metals by oat as influenced by soil type and additions of cadmium, lead, zinc and copper. Plant and Soil, 88(1), 57–69.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54(5), 464–465.

    Article  Google Scholar 

  • Census of India (2011). Census of India, Government of India. http://www.censusindia.gov.in/2011census/population_enumeration.aspx. Accessed 10 October 2013.

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., et al. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551.

    Article  CAS  Google Scholar 

  • Chuan, M. C., Shu, G. Y., & Liu, J. C. (1996). Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollution, 90(3), 543–556.

    CAS  Google Scholar 

  • Datta, D. K., & Subramanian, V. (1998). Distribution and fraction of heavy metals in the surface sediments if the Ganges–Brahmaputra–Meghana river system in the Bengal Basin. Environmental Geology, 36(1/2), 93–101.

    Article  CAS  Google Scholar 

  • Dragovic, S., Mihailovic, N., & Gajic, B. (2008). Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 72(3), 491–495.

    Article  CAS  Google Scholar 

  • Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E., & Buszewski, B. (2001). Adsorption and migration of heavy metals in soil. Polish Journal of Environmental Studies, 10(1), 1–10.

    CAS  Google Scholar 

  • Ergin, M., Saydam, C., Basturk, O., Erdem, E., & Yoruk, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the north-eastern sea of Marmara. Chemical Geology, 91(3), 269–285.

    Article  CAS  Google Scholar 

  • Faiz, Y., Tufail, M., Tayyeb-Javed, M., Chaudhry, M. M., & Siddique, N. (2009). Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad expressway, Pakistan. Microchemical Journal, 92(2), 186–192.

    Article  CAS  Google Scholar 

  • Feng, H., Han, X., Zhang, W., & Yu, L. (2004). A preliminary study of heavy metal contamination in Yangtze River intetidal zone due to urbanization. Marine Pollution Bulletin, 49(11–12), 910–915.

    Article  CAS  Google Scholar 

  • Gambrell, R. P. (1994). Trace and toxic metals in wetlands—a review. Journal of Environmental Quality, 23, 883–891.

    Article  CAS  Google Scholar 

  • Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44(1), 249–253.

    CAS  Google Scholar 

  • Gibbs, R. J. (1977). Transport phases of transition metals in the Amazon and Yukon rivers. Geological Society of America Bulletin, 88, 829–943.

    Article  CAS  Google Scholar 

  • Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., et al. (2010). Significant acidification in major Chinese croplands. Science, 327, 1008–1010.

    Article  CAS  Google Scholar 

  • GWIB-CGWB (2007). District wise ground water information booklet for Bihar, Jharkhand and West Bengal states. Central Ground Water Board, Ministry of Water resources, India. http://cgwb.gov.in/District_Profile/AP_districtProfiles.html. Accessed 10 October 2013.

  • Hokanson, L. (1980). Ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Horowitz, A.J. (1991). A primer in sediment-trace element chemistry, United States Geological Survey Open-File Report 91–76, USA, 136 pp. http://pubs.er.usgs.gov/publication/ofr9176. Accessed 10 October 2013.

  • Inglett, P.W., Reddy, K.R., & Corstanje, R. (2005). Anaerobic soils. In D. Hillel (Ed.), Reference module in earth systems and environmental sciences, encyclopedia of soils in the environment (pp. 72–78). Copyright © 2005 Elsevier Ltd. All rights reserved. http://www.sciencedirect.com/science/article/pii/B0123485304001788.

  • Jayaprakash, M., Nagarajan, R., Velmurugan, P. M., Sathiyamoorthy, J., Krishnamurthy, R. R., & Urban, B. (2012). Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India. Environmental Monitoring and Assessment, 184(12), 7407–7424.

    Article  CAS  Google Scholar 

  • Koretsky, C. M., Haas, J. R., Ndenga, N. T., & Miller, D. (2006). Seasonal variations in vertical redox stratification and potential influence on trace metal speciation in minerotrophic peat sediments. Water Air Soil Pollution, 173(1–4), 373–403.

    Article  CAS  Google Scholar 

  • Kumar, A., Ramanathan, A. L., Prabha, S., Ranjan, R. K., Ranjan, S., & Singh, G. (2012). Metal speciation studies in the aquifer sediments of Semria Ojhapatti, Bhojpur District, Bihar. Environmental Monitoring and Assessment, 184(5), 3027–3042.

    Article  CAS  Google Scholar 

  • Laing, G. D., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of The Total Environment, 407(13), 3972–3985.

    Article  Google Scholar 

  • Long, E., MacDonald, D., Smith, S., & Calder, F. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Article  Google Scholar 

  • Lu, X., Wang, L., Lei, K., Huang, J., & Zhai, Y. (2009). Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal of Hazardous Materials, 161(2–3), 1058–1062.

    Article  CAS  Google Scholar 

  • Mandal, B., Chatterjee, J., Hazra, G. C., & Mandal, L. N. (1992). Effect of preflooding on transformation of applied zinc and its uptake by rice in lateritic soils. Soil Science, 153(3), 250–257.

    Article  CAS  Google Scholar 

  • Martincic, D., Kwokal, Z., & Branica, M. (1990). Distribution of zinc, lead, cadmium and copper between different size fractions of sediments I. The Limski kanal (north Adriatic sea). Science of The Total Environment, 95, 201–215.

    Article  CAS  Google Scholar 

  • Martinez, C. E., & McBride, M. B. (2001). Cd, Cu, Pb, and Zn coprecipitates in Fe oxide formed at different pH: aging effects on metal solubility and extractability by citrate. Environmental Toxicology and Chemistry, 20(1), 122–126.

    Article  CAS  Google Scholar 

  • McBride, M. B., & Spiers, G. (2001). Trace element content of selected fertilizers and dairy manures as determined by ICP-MS. Communications in Soil Science and Plant Analysis, 32(1–2), 139–156.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Parker, D. R., & Clarke, J. M. (1999). Metals and micronutrients-food safety issues. Field Crops Research, 60(1–2), 143–163.

    Article  Google Scholar 

  • McLean, J.E., & Bledsoe, B.E. (1992). Behaviour of metals in soil. Groundwater issue, USEPA, Washington, DC. www.epa.gov/superfund/remedytech/tsp/download/issue14.pdf. Accessed 10 October 2013.

  • McLennan, S.M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4), doi: 10.1029/2000GC0001092000GC000109.

  • Mico, C., Recatala, L., Peris, M., & Sanchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872.

    Article  CAS  Google Scholar 

  • MoEF (Ministry of Environment and Forests), (2007). State of environment report, Bihar. Bihar State Pollution Control Board, Patna, and Department of Environment & Forest, Government of Bihar. http://moef.nic.in/soer/state/SoE%20report%20of%20Bihar.pdf Accessed 10 October, 2013.

  • Mucha, A. P., Vasconcelos, M. T. S. D., & Bordalo, A. A. (2003). Macrobenthic community in the Douro Estuary: relations with trace metals and natural sediment characteristics. Environmental Pollution, 121(2), 169–180.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in the sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • Muthuraj, S., & Jayaprakash, M. (2008). Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India. Environmental Geology, 56(1), 207–217.

    Article  Google Scholar 

  • Nagarajan, R., Jonathan, M. P., Roy, P. D., Wai-Hwa, L., Prasanna, M. V., Sarkar, S. K., et al. (2013). Metal concentrations in sediments from tourist beaches of Miri City, Sarawak, Malaysia (Borneo Island). Marine Pollution Bulletin, 73(1), 369–373.

    Article  CAS  Google Scholar 

  • Neto, B. J. A., Smith, B. J., & McAllister, J. J. (2000). Heavy metal concentrations in surface sediments in a near shore environment Jurujuba Sound Southeast Brazil. Environmental Pollution, 109(1), 1–9.

    Article  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of The Total Environment, 311(1–3), 205–219.

    Article  CAS  Google Scholar 

  • Notten, M. J. M., Oosthoek, A. J. P., Rozema, J., & Aerts, R. (2005). Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environmental Pollution, 138(1), 178–190.

    Article  CAS  Google Scholar 

  • Pekey, H., Karakas, D., Ayberk, S., Tolun, L., & Bakoglu, M. (2004). Ecological risk assessment using trace elements from surface sediments of I’zmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48(9–10), 946–953.

    Article  CAS  Google Scholar 

  • Phillips, I. R. (1999). Copper, lead, cadmium, and zinc sorption by waterlogged and air-dry soil. Journal of Soil Contamination, 8(3), 343–364.

    Article  CAS  Google Scholar 

  • Phillips, I.R., & Greenway, M. (1997). Lead and cadmium availability in soils under waterlogged and air-dry conditions. In: R. Prost (Ed.) Contaminated soils: Third International Conference on the Biogeochemistry of Trace Elements, Paris, May 15–19, 1995.

  • Phillips, I. R., & Greenway, M. (1998). Changes in water-soluble and exchangeable ions, CEC and Pmax under alternating waterlogged and drying conditions. Communications in Soil Science and Plant Analysis, 29(1–2), 51–65.

    Article  CAS  Google Scholar 

  • Ponnamperuma, F. N. (1972). The chemistry of submerged soils. Advances in Agronomy, 24, 29–96.

    Article  CAS  Google Scholar 

  • Radwan, M. A., & Salama, A. K. (2006). Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food and Chemical Toxicology, 44(8), 1273–1278.

    Article  CAS  Google Scholar 

  • Salomons, W., & Forstner, U. (1984). Metals in the hydrocycle. New York: Springer.

    Book  Google Scholar 

  • Salomons, M., & Mook, W. G. (1980). biochemical processes affecting metal concentrations in Lake Sediments (IJsselmeer, The Netherlands). Science of the Total Environment, 16(3), 217–229.

    Article  CAS  Google Scholar 

  • Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coast shelf sediments. Marine Environmental Research, 48(2), 161–176.

    Article  CAS  Google Scholar 

  • Schuhmacher, M., Bosque, M. A., Domingo, J. L., & Corbella, J. (1991). Dietary intake of lead and cadmium from foods in Tarragona province, Spain. Bulletin of Environmental Contamination and Toxicology, 46(2), 320–328.

    Article  CAS  Google Scholar 

  • Seshan, B. R. R., Natesan, U., & Deepthi, K. (2010). Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. International Journal of Environmental Science and Technology, 7(2), 291–306.

    Article  CAS  Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66(2), 258–266.

    CAS  Google Scholar 

  • Sims, J. L., & Patrick, W. H. (1978). The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Science Society of America Journal, 42, 258–262.

    Article  CAS  Google Scholar 

  • Singh, A. K., Hasnain, S. I., & Banerjee, D. K. (1999). Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—a tributary of the lower Ganga, India. Environmental Geology, 39(1), 90–98.

    Article  CAS  Google Scholar 

  • Singh, M., Müller, G., & Singh, I. B. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain, India. Water, Air, and Soil Pollution, 141(1–4), 35–54.

    Article  CAS  Google Scholar 

  • Singh, M., Müller, G., & Singh, I. B. (2003). Geogenic distribution and baseline concentration of heavy metals in sediments of the Ganges River, India. Journal of Geochemical Exploration, 80, 1–17.

    Article  CAS  Google Scholar 

  • Singh, A., Sharma, R. K., Agrawal, M., & Marshall, F. M. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48(2), 611–619.

    Article  CAS  Google Scholar 

  • Stalikas, C. D., Mantalova, A. C., & Pilidis, G. A. (1997). Multielement concentrations in vegetable species grown in two typical agricultural areas of Greece. Science of the Total Environment, 206(1), 17–24.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, source and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang. China. Journal of Hazardous Materials, 174(1–3), 455–462.

    Article  CAS  Google Scholar 

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92(5), 517–523.

    Article  CAS  Google Scholar 

  • Szefer, P., Kusak, A., Szefer, K., Glasby, G. P., Jankowska, H., Wolowic, M., et al. (1998). Evaluation of anthropogenic influx of metallic pollutants into Puck Bay, Southern Baltic. Applied Geochemistry, 13(3), 293–304.

    Article  CAS  Google Scholar 

  • Taghipour, H., Mosaferi, M., Armanfar, F., & Gaemmagami, S. J. (2013). Heavy metals pollution in the soils of suburban areas in big cities: a case study. Journal of Environmental Science and Technology, 10(2), 243–250.

    CAS  Google Scholar 

  • Tang, W., Ao, L., Zhang, H., & Shan, B. (2014). Accumulation and risk of heavy metals in relation to agricultural intensification in the river sediments of agricultural regions. Environmental Earth Sciences, 71, 3945–3951. doi:10.1007/s12665-013-2779-z.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tiller, K. G., & Merry, R. H. (1982). Copper pollution of agricultural soils. In J. F. Loneragan, A. D. Robson, & R. D. Graham (Eds.), Copper in soils and plants (pp. 119–140). London: Academic.

    Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575.

    Article  Google Scholar 

  • Warran, L. A., & Zimmerman, A. P. (1993). Trace metal suspended particulate matter associations in a fluvial system: physical and chemical influences. In S. S. Rao (Ed.), Particulate matter and aquatic contaminant (pp. 127–155). Chelsea: Lewis Publishers.

    Google Scholar 

  • Wei, B., & Yang, L. (2011). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107.

    Article  Google Scholar 

  • Whitney, P. R. (1975). Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments. Journal of Geochemical Exploration, 4, 251–263.

    Article  CAS  Google Scholar 

  • Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Correlation analyses on binding behavior of heavy metals with sediment matrices. Water Research, 35(10), 2417–2428.

    Article  CAS  Google Scholar 

  • Yuan, G., & Lavkulich, L. M. (1997). Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties. Communications in Soil Science and Plant Analysis, 28(6), 571–587.

    Article  CAS  Google Scholar 

  • Zhang, M., Alva, A. K., Li, Y. C., & Calvert, D. V. (1997). Chemical association of Cu, Zn, Mn, and Pb in selected sandy citrus soils. Soil Science, 162(3), 181–188.

    Article  CAS  Google Scholar 

  • Zheng, S. A., Zheng, X. Q., & Chen, C. (2013). Transformation of metal speciation in purple soil as affected by waterlogging. International Journal of Environmental Science and Technology, 10(2), 351–358.

    Article  CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H. P., Li, N. Y., & Li, Z. A. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine. South China. Science of the Total Environment, 407(5), 1551–1561.

    Article  CAS  Google Scholar 

  • Zoller, W. H., Gladney, E. S., & Duce, R. A. (1974). Atmosphere concentrations and sources of trace metals at the South Pole. Science, 183, 199–201.

    Article  Google Scholar 

Download references

Acknowledgments

Authors from IWMI, New Delhi, would like to thank Dr. Bharat R Sharma, Principal Researcher (Water Resources) and Coordinator, IWMI-India Program and Dr. Pramod Aggarwal, Regional Program Leader (South Asia) for CGIAR Research Program on CCAFS, IWMI, New Delhi office, India, for their constant support and encouragement. Authors from IWMI, New Delhi, wish to thank ICAR, Patna, Bihar, for their help in soil sample analysis and to thank the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) for funding this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajmohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajmohan, N., Prathapar, S.A., Jayaprakash, M. et al. Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin. Environ Monit Assess 186, 5411–5427 (2014). https://doi.org/10.1007/s10661-014-3790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3790-x

Keywords

Navigation