Skip to main content

Advertisement

Log in

Variations in global temperature and precipitation for the period of 1948 to 2010

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate change has impacts on both natural and human systems. Accurate information regarding variations in precipitation and temperature is essential for identifying and understanding these potential impacts. This research applied Mann–Kendall, rescaled range analysis and wave transform methods to analyze the trends and periodic properties of global and regional surface air temperature (SAT) and precipitation (PR) over the period of 1948 to 2010. The results show that 65.34 % of the area studied exhibits significant warming trends (p < 0.05) while only 3.18 % of the area exhibits significant cooling trends. The greatest warming trends are observed in Antarctica (0.32 °C per decade) and Middle Africa (0.21 °C per decade). Notably, 62.26 % of the area became wetter, while 22.01 % of the area shows drying trends. Northern Europe shows the largest precipitation increase, 12.49 mm per decade. Western Africa shows the fastest drying, −21.05 mm per decade. The rescaled range analysis reveals large areas that show persistent warming trends; this behavior in SAT is more obvious than that in PR. Wave transform results show that a 1-year period of SAT variation dominates in all regions, while inconsistent 0.5-year bands are observed in East Asia, Middle Africa, and Southeast Asia. In PR, significant power in the wavelet power spectrum at a 1-year period was observed in 17 regions, i.e., in all regions studied except Western Europe, where precipitation is instead characterized by 0.5-year and 0.25-year periods. Overall, the variations in SAT and PR can be consistent with the combined impacts of natural and anthropogenic factors, such as atmospheric concentrations of greenhouse gases, the internal variability of climate system, and volcanic eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abghari, H., Tabari, H., & Talaee, P. H. (2013). River flow trends in the west of Iran during the past 40 years: impact of precipitation variability. Global and Planetary Change, 101, 52–60.

    Article  Google Scholar 

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Tank, A. M. G. K., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109. doi:10.1029/2005jd006290.

    Article  Google Scholar 

  • Ambenje, P., et al. (2007). In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), IPCC, 2007: climate change 2007: the scientific basis. Contribution of working group I to the fourth assessment report of the inter-governmental panel on climate change (p. 243). Cambridge: Cambridge University Press.

    Google Scholar 

  • Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24, 395–458.

    Article  Google Scholar 

  • Forster, P., et al. (2007). In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Changes in atmospheric constituents and in radiative forcing. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fu, C., & Wang, Q. (1992). The definition and detection of the abrupt climate change. Scientia Atomspherica Sinica, 16, 482–493.

    Google Scholar 

  • Gemmer, M., Becker, S., & Jiang, T. (2004). Observed monthly precipitation trends in China 1951–2002. Theoretical and Applied Climatology, 77(1–2), 39–45.

    Article  Google Scholar 

  • Gong, D. (1999). Antarctic climate change under the background of global warming. Scientia Geographica Sinica, 19, 102–107.

    Google Scholar 

  • Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561–566.

    Article  Google Scholar 

  • Hsu, K. C., & Li, S. T. (2010). Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural network. Advances in Water Resources, 33(2), 190–200.

    Article  Google Scholar 

  • Hurrell, J., & Loon, H. V. (1997). Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36, 301–326.

    Article  Google Scholar 

  • Jiang, X., Liu, S. H., Ma, M. M., Zhang, J., & Song, J. (2009). A wavelet analysis of the precipitation time series Northeast China during the last 100 years. Geographical Research, 28, 354–362.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., & Kistler, R. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffin.

    Google Scholar 

  • Kim, S. (2004). Wavelet analysis of precipitation variability in northern California, U.S.A. KSCE Journal of Civil Engineering, 8(4), 471–477.

    Article  Google Scholar 

  • Kumar, P., & Foufoula-Georgiou, E. (1997). Wavelet analysis for geophysical applications. Reviews of Geophysics, 35(4), 385.

    Article  Google Scholar 

  • Labat, D. (2008). Wavelet analysis of the annual discharge records of the world’s largest rivers. Advances in Water Resources, 31(1), 109–117.

    Article  Google Scholar 

  • Labat, D., Ronchail, J., & Guyot, J. L. (2005). Recent advances in wavelet analyses: part 2—Amazon, Parana, Orinoco and Congo discharges time scale variability. Journal of Hydrology, 314, 289–311.

    Article  Google Scholar 

  • Lettenmaier, D. P., Wood, E. F., & Wallis, J. R. (1994). Hydro-climatological trends in the continental United States, 1948-88. Journal of Climate, 7, 586–607.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Mass, C. F., & Portman, D. A. (1989). Major volcanic eruptions and climate: a critical evaluation. Journal of Climate, 2(6), 566–593.

    Article  Google Scholar 

  • Mccormick, M. P., Thomason, L. W., & Trepte, C. R. (1995). Atmospheric effects of the Mt Pinatubo eruption. Nature, 373(6513), 399–404.

    Article  CAS  Google Scholar 

  • Miao, C. Y., & Ni, J. R. (2010). Implement of filter to remove the autocorrelation's influence on the Mann-Kendall test: a case in hydrological series. International Journal of Food Agriculture & Environment, 8(3), 1241–1246.

    Google Scholar 

  • Miao, C. Y., Ni, J. R., & Borthwick, A. G. L. (2010). Recent changes in water discharge and sediment load of the Yellow River basin, China. Progress in Physical Geography, 34(4), 541–561.

    Article  Google Scholar 

  • Miao, C. Y., Ni, J. R., Borthwick, A. G. L., & Yang, L. (2011a). A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Global and Planetary Change, 76(3-4), 196–205.

    Article  Google Scholar 

  • Miao, C. Y., Yang, L., & Li, S. L. (2011b). Streamflow changes and its influencing factors in the mainstream of the Songhua River basin, Northeast China over the past 50 years. Environmental Earth Science, 63(3), 489–499.

    Article  CAS  Google Scholar 

  • Miao, C. Y., Duan, Q. Y., Yang, L., & Borthwick, A. G. L. (2012). On the applicability of temperature and precipitation data from CMIP3 for China. Plos One, 7(9), e44659. doi:10.1371/journal.pone.0044659.

    Article  CAS  Google Scholar 

  • Miao, C. Y., Duan, Q. Y., Sun, Q. H., & Li, J. D. (2013). Evaluation and application of Bayesian multi-model estimation in temperature simulations. Progress in Physical Geography, 37(6), 727–744.

    Article  Google Scholar 

  • New, M., Todd, M., Hulme, M., & Jones, P. (2001). Precipitation measurements and trends in the twentieth century. International Journal of Climatology, 21(15), 1889–1922.

    Article  Google Scholar 

  • Onoz, B., & Bayazit, M. (2003). The power of statistical tests for trend detection. Turkish Journal of Engineering and Environmental Sciences, 27(4), 247–251.

    Google Scholar 

  • Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20(9), 2011–2026.

    Article  Google Scholar 

  • Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191–219.

    Article  CAS  Google Scholar 

  • Robock, A., & Mao, J. (1995). The volcanic signal in surface temperature observations. Journal of Climate, 8, 1086–1103.

    Article  Google Scholar 

  • Rudolf B., Becker A., Schneider U., Meyer-Chiristoffer A., & Ziese M. (2010). The new “GPCC Full Data Reanalysis Version 5” providing high-quality gridded monthly precipitation data for the global land-surface is public available since December. GPCC Status Rep, 2010.

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389.

    Article  Google Scholar 

  • Stott, P. A. (2000). External control of 20th century temperature by natural and anthropogenic forcings. Science, 290(5499), 2133–2137.

    Article  CAS  Google Scholar 

  • Sun, Q. H., Miao, C. Y., Duan, Q. Y., Kong, D. X., Ye, A. Z., Di, Z. H., et al. (2014). Would the ‘real’ observed dataset stand up? A critical examination of eight observed gridded climate datasets for China. Environmental Research Letters, 9(1), 015001. doi:10.1088/1748-9326/9/1/015001.

    Article  Google Scholar 

  • Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J., & Mitchell, J. F. B. (1999). Causes of twentieth-century temperature change near the Earth’s surface. Nature, 399, 569–572.

    Article  CAS  Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78.

    Article  Google Scholar 

  • Wang, Q. X., Fan, X. H., Qin, Z. D., & Wang, M. B. (2012). Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010. Global and Planetary Change, 92–93, 138–147.

    Article  Google Scholar 

  • Weron, R. (2002). Estimating long range dependence: finite sample properties and confidence intervals. Physica A: Statistical Mechanics and its Applications, 312, 285–299.

    Article  Google Scholar 

  • Xiao, D., & Li, J. (2011). Mechanism of stratospheric decadal abrupt cooling in the early 1990s as influenced by the Pinatubo eruption. Chinese Science Bulletin, 56(8), 772–780.

    Article  CAS  Google Scholar 

  • Xu, Z. X., Takeuchi, K., & Ishidaira, H. (2003). Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology, 279(1–4), 144–150.

    Article  Google Scholar 

  • Yue, S., & Wang, C. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18, 201–218.

    Article  Google Scholar 

  • Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002a). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16(9), 1807–1829.

    Article  Google Scholar 

  • Yue, S., Pilon, P., & Cavadias, G. (2002b). Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1–4), 254–271.

    Article  Google Scholar 

  • Zhang, Q., Sun, P., Singh, V. P., & Chen, X. (2012). Spatial-temporal precipitation changes (1956–2000) and their implications for agriculture in China. Global and Planetary Change, 82–83, 86–95.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the National Natural Science Foundation of China (no. 41001153), the State Key Laboratory of Earth Surface Processes and Resource Ecology, and Fundamental Research Funds for Central Universities. Thanks are also expressed to the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and the Global Precipitation Climatology Centre (GPCC) for permission to access the climate data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiyuan Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Kong, D., Miao, C. et al. Variations in global temperature and precipitation for the period of 1948 to 2010. Environ Monit Assess 186, 5663–5679 (2014). https://doi.org/10.1007/s10661-014-3811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3811-9

Keywords

Navigation