Skip to main content
Log in

Applicability of universal Bacteroidales genetic marker for microbial monitoring of drinking water sources in comparison to conventional indicators

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water quality monitoring is essential for the provision of safe drinking water. In this study, we compared a selection of fecal indicators with universal Bacteroidales genetic marker to identify fecal pollution of a variety of drinking water sources. A total of 60 samples were collected from water sources. The microbiological parameters included total coliforms, fecal coliforms, Escherichia coli and fecal streptococci as the fecal indicator bacteria (FIB), Clostridium perfringens and H2S bacteria as alternative indicators, universal Bacteroidales genetic marker as a promising alternative fecal indicator, and Salmonella spp., Shigella spp., and E. coli O157 as pathogenic bacteria. From 60 samples analyzed, Bacteroidales was the most frequently detected indicator followed by total coliforms. However, the Bacteroidales assay failed to detect the marker in nine samples positive for FIB and other alternative indicators. The results of our study showed that the absence of Bacteroidales is not necessarily an evidence of fecal and pathogenic bacteria absence and may be unable to ensure the safety of the water. Further research, however, is required for a better understanding of the use of a Bacteroidales genetic marker as an indicator in water quality monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agudelo, R., Codony, F., Adrados, B., Fittipaldi, M., Penuela, G., & Morato, J. (2010). Monitoring bacterial faecal contamination in waters using multiplex real-time PCR assay for Bacteroides spp. and faecal enterococci. Water Sanitation, 36(1), 127–132.

    CAS  Google Scholar 

  • Ahmed, W., Stewart, J., Powell, D., & Gardner, T. (2008). Evaluation of Bacteroides markers for the detection of human faecal pollution. Letters in Applied Microbiology, 46(2), 237–242.

    Article  CAS  Google Scholar 

  • Ahmed, W., Goonetilleke, A., Powell, D., Chauhan, K., & Gardner, T. (2009). Comparison of molecular markers to detect fresh sewage in environmental waters. Water Research, 43(9), 4908–4917.

    Article  CAS  Google Scholar 

  • APHA, AWWA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington DC: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  • Araujo, M., Sueiro, R. A., Gomez, M. J., & Garrido, M. J. (2004). Enumeration of Clostridium perfringens spores in groundwater samples: comparison of six culture media. Journal of Microbiological Methods, 57(2), 175–180.

    Article  CAS  Google Scholar 

  • Balleste, E., & Blanch, A. R. (2010). Persistence of Bacteroides species populations in a river as measured by molecular and culture techniques. Applied and Environmental Microbiology, 76(22), 7608–7616.

    Article  CAS  Google Scholar 

  • Bernhard, A. E., & Field, K. G. (2000). Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Applied and Environmental Microbiology, 66(4), 1587–1594.

    Article  CAS  Google Scholar 

  • Bernhard, A. E., Field, K. G., Goyard, T., Simonich, M. T., & Field, K. G. (2003). Application of a rapid method for identifying fecal pollution sources in a multi-use estuary. Water Research, 37(4), 909–913.

    Article  CAS  Google Scholar 

  • Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657–3703.

    Article  Google Scholar 

  • Craun, G. F., Brunkard, J. M., Yoder, J. S., Roberts, V. A., Carpenter, J., Wade, T., Calderon, R. L., Roberts, J. M., Beach, M. J., & Roy, S. L. (2010). Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clinical Microbiology Reviews, 23(3), 507–528.

    Article  CAS  Google Scholar 

  • Dick, L. K., & Field, K. G. (2004). Rapid estimation of numbers of fecal Bacteroidetes by use of a quantitative PCR assay for 16S rRNA genes. Applied and Environmental Microbiology, 70(9), 5695–5697.

    Article  CAS  Google Scholar 

  • Environment Agency, Standing Committee of Analysts (SAC). (2010). The microbiology of drinking water—part 6—methods for the isolation and enumeration of sulphite-reducing clostridia and Clostridium perfringens by membrane filtration, methods for the examination of waters and associated materials. Bristol: Environment agency.

    Google Scholar 

  • EPA. (2000). Implementation guidance for ambient water quality criteria for bacteria. EPA Number 823D00001, http://yosemite.epa.gov/water/owrccatalog.nsf/epanumber.

  • European Union (EU). (1998). Council directive 98/83/CE on the quality of water intended for human consumption. Official Journal of the European Communities L, 330, 32–53.

    Google Scholar 

  • Figueras, M. J., & Borreg, J. J. (2010). New perspectives in monitoring drinking water microbial quality. International Journal of Environmental Research and Public Health, 7(12), 4179–4202.

    Article  Google Scholar 

  • Fremaux, B., Gritzfeld, J., Boa, T., & Yost, C. K. (2009). Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Water Research, 43(19), 4838–4849.

    Article  CAS  Google Scholar 

  • Gourmelon, M., Caprais, M. P., Mieszkin, S. M. R., Wery, N., Jardé, E., Derrien, M., Jadas-Hecart, A., Communal, P. Y., & Jaffrezic, A. (2010). Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Research, 44(16), 4812–4824.

    Article  CAS  Google Scholar 

  • Kildare, B. J., Leutenegger, C. M., McSwain, B. S., Bambic, D. G., Rajal, V. B., & Wuertz, S. (2007). 16S rRNA-based assays for quantitative detection of universal, human, cow, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Research, 41(16), 3701–3715.

    Article  CAS  Google Scholar 

  • Kreader, C. A. (1995). Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Applied and Environmental Microbiology, 61(4), 1171–1179.

    CAS  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). New York: John Wiley and Sons.

    Google Scholar 

  • Layton, L., McKay, L., Williams, D., Garrett, V., Gentry, R., & Sayler, G. (2006). Development of Bacteroides 16S rRNA Gene TaqMan-based real-time pcr assays for estimation of total, human, and bovine fecal pollution in water. Applied and Environmental Microbiology, 72(6), 4214–4224.

    Article  CAS  Google Scholar 

  • Lee, D. Y., Weir, S. C., Lee, H., & Trevors, J. T. (2010). Quantitative identification of fecal water pollution sources by TaqMan real-time PCR assays using Bacteroidales 16S rRNA genetic markers. Applied Microbiology and Biotechnology, 88(6), 1373–1383.

    Article  CAS  Google Scholar 

  • Manja, K. S., Maurya, M. S., & Rao, K. M. (1982). A simple field test for the detection of faecal pollution in drinking water. Bulletin of the World Health Organization, 60(5), 797.

    CAS  Google Scholar 

  • OECD, WHO. (2003). Assessing microbial safety of drinking water. Improving approaches and methods. Chapter 1. London: IWA Publishing.

    Google Scholar 

  • Okabe, S., & Shimazu, Y. (2007). Persistence of host-specific Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Applied Microbiology and Biotechnology, 76(4), 935–944.

    Article  CAS  Google Scholar 

  • Rogers, S. W., Donnelly, M., Peed, L., Kelty, C. A., Mondal, S., Zhong, Z., & Shanks, O. C. (2011). Decay of bacterial pathogens, fecal indicators, and real-time quantitative PCR genetic markers in manure-amended soils. Applied and Environmental Microbiology, 77(14), 4839–4848.

    Article  CAS  Google Scholar 

  • Ryzinska-Paier, G., Sommer, R., Haider, J. M., Knetsch, S., Frick, C., Kirschner, A. K. T., & Farnleitner, A. H. (2011). Acid phosphatase test proves superior to standard phenotypic identification procedure for Clostridium perfringens strains isolated from water. Journal of Microbiological Methods, 87(2), 189–194.

    Article  CAS  Google Scholar 

  • Saunders, A. M., Kristiansen, A., Lund, M. B., Revsbech, N. P., & Schramm, A. (2009). Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water. Systematic and Applied Microbiology, 32(5), 362–370.

    Article  CAS  Google Scholar 

  • Savichtcheva, O., & Okabe, S. (2006). Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Research, 40(13), 2463–2476.

    Article  CAS  Google Scholar 

  • Schriewer, A., Miller, W. A., Byrne, B. A., Miller, M. A., Oates, S., Conrad, P. A., Hardin, D., Yang, H. H., Chouicha, N., & Melli, A. (2010). Presence of Bacteroidales as a predictor of pathogens in surface waters of the central California coast. Applied and Environmental Microbiology, 76(17), 5802–5814.

    Article  CAS  Google Scholar 

  • Seurinck, S., Defoirdt, T., Verstraete, W., & Siciliano, S. D. (2005). Detection and quantification of the human–specific HF183 Bacteroides 16S rRNA genetic marker with real–time PCR for assessment of human faecal pollution in freshwater. Environmental Microbiology, 7(2), 249–259.

    Article  CAS  Google Scholar 

  • Sobsey, M. D. & Pfaender, F. K. (2002) Evaluation of the H2S method for detection of fecal contamination of drinking water, Report WHO/SDE/WSH/02.08, Water Sanitation and Health Programme, WHO, Geneva, Switzerland.

  • Stapleton, C. M., Kay, D., Wyer, M. D., Davies, C., Watkins, J., Kay, C., McDonald, A. T., Porter, J., & Andrew, G. (2009). Evaluating the operational utility of a Bacteroidales quantitative PCR-based MST approach in determining the source of faecal indicator organisms at a UK bathing water. Water Research, 43(19), 4888–4899.

    Article  CAS  Google Scholar 

  • Van der Wielen, P. W., & Medema, G. (2010). Unsuitability of quantitative Bacteroidales 16S rRNA gene assays for discerning fecal contamination of drinking water. Applied and Environmental Microbiology, 76(14), 4876–4881.

    Article  Google Scholar 

  • Walters, S. P., Yamahara, K. M., & Boehm, A. B. (2009). Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. Water Research, 43(19), 4929–4939.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted with funding from the vice chancellery for research at the Isfahan University of Medical Sciences (Grant no. 390530) as a part of Ph.D. dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nikaeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahryari, A., Nikaeen, M., Khiadani (Hajian), M. et al. Applicability of universal Bacteroidales genetic marker for microbial monitoring of drinking water sources in comparison to conventional indicators. Environ Monit Assess 186, 7055–7062 (2014). https://doi.org/10.1007/s10661-014-3910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3910-7

Keywords

Navigation