Skip to main content
Log in

Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper describes the concentration of selected heavy metals (Co, Cu, Ni, Pb, and Zn) in the Mamut river sediments and evaluate the degree of contamination of the river polluted by a disused copper mine. Based on the analytical results, copper showed the highest concentration in most of the river samples. A comparison with Interim Canadian Sediment Quality Guidelines (ICSQG) and Germany Sediment Quality Guidelines (GSQG) indicated that the sediment samples in all the sampling stations, except Mamut river control site (M1), exceeded the limit established for Cu, Ni, and Pb. On the contrary, Zn concentrations were reported well below the guidelines limit (ICSQG and GSQG). Mineralogical analysis indicated that the Mamut river sediments were primarily composed of quartz and accessory minerals such as chalcopyrite, pyrite, edenite, kaolinite, mica, and muscovite, reflected by the geological character of the study area. Enrichment factor (EF) and geoaccumulation index (I geo ) were calculated to evaluate the heavy metal pollution in river sediments. I geo values indicated that all the sites were strongly polluted with the studied metals in most sampling stations, specifically those located along the Mamut main stream. The enrichment factor with value greater than 1.5 suggested that the source of heavy metals was mainly derived from anthropogenic activity such as mining. The degree of metal changes (δfold) revealed that Cu concentration in the river sediments has increased as much as 20 to 38 folds since the preliminary investigation conducted in year 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Akiyama, Y. (1987). Ore-genesis and conceptual model of ore target criteria of the Mamut porphyry copper deposit, Sabah, Malaysia. Mining Geology, 37(2), 145–158.

    Google Scholar 

  • Ali, M. F., Heng, L. Y., Ratnam, W., Nais, J., & Ripin, R. (2004). Metal distribution and contamination of the Mamut river, Malaysia caused by copper mine discharge. Bulletin of Environmental Contamination and Toxicology, 73, 535–542.

    Article  CAS  Google Scholar 

  • Awofulu, O. R., Mbolekwa, Z., Mtshemla, V., & Fatoki, O. S. (2005). Levels of trace metals in water and sediment from Tyume river and its effects in an irrigated farmland. Water SA, 31(1), 87–94.

    Google Scholar 

  • Azizli, K. M., Tan, C. Y., & Birrel, J. (1995). Technical note: Design of the Lohan tailings dam, Mamut Copper Mining Sdn. Bhd., Malaysia. Minerals Engineering, 8(6), 705–712.

    Article  CAS  Google Scholar 

  • Basketter, D. A., Angelini, G., Ingber, A., Kern, P. S., & Menné, T. (2003). Nickel, chromium and cobalt in consumer products: Revisiting safe levels in the new millennium. Contact Dermatitis, 49(1), 1–7.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Routh, J., Jacks, G., Bhattacharya, P., & Morth, M. (2006). Environmental assessment of abandoned mine tailings in Adak, Vasterbotten district (northern Sweden). Applied Geochemistry, 21, 1760–1780.

    Article  CAS  Google Scholar 

  • Canovas, C. R., Olias, M., Nieto, J. M., Sarmiento, A. M., & Ceron, J. C. (2007). Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents. Science of the Total Environment, 373, 363–382. doi:10.1016/j.scitotenv.2006.11.022.

    Article  CAS  Google Scholar 

  • Cui, B., Zhang, Q., Zhang, K., Liu, X., & Zhang, H. (2011). Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environmental Pollution, 159, 1297–1306. doi:10.1016/j.envpol.2011.01.024.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156, 609–643.

    Article  CAS  Google Scholar 

  • Galan, E., Gomez-Ariza, J. L., Gonzalez, I., Fernandez-Caliani, J. C., Morales, E., & Giraldez, I. (2003). Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18, 409–421.

    Article  CAS  Google Scholar 

  • Gandy, C. J., Smith, J. W. N., & Jarvis, A. P. (2007). Attenuation of mining-derived pollutants in the hyporheic zone: a review. Science of the Total Environment, 373, 435–446. doi:10.1016/j.scitotenv.2006.11.004.

    Article  CAS  Google Scholar 

  • Hammarstrom, J. M., Seal, R. R., II, Meier, A. L., & Jackson, J. C. (2003). Weathering of sulfidic shale and copper mine waste: secondary minerals and metal cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. Environmental Geology, 45, 35–57.

    Article  CAS  Google Scholar 

  • Harikumar, P. S., Prajitha, K., & Silpa, S. (2010). Assessment of heavy metal contamination in the sediments of a river draining into a Ramsar site in the Indian Sub-continent. Journal of Advance Laboratory Research and Biology, 1(2), 157–169.

    Google Scholar 

  • Jiries, A. (2003). Vehicular contamination of dust in Amman Jordan. Environmentalist, 23, 205–210.

    Article  Google Scholar 

  • Jopony, M., & Tongkul, F. (2009). Acid mine drainages at Mamut Copper Mine, Sabah, Malaysia. Borneo Science, 24, 83–94.

    Google Scholar 

  • Jung, M. C. (2001). Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea. Applied Geochemistry, 16, 1369–1375.

    Article  CAS  Google Scholar 

  • Kronvang, B. (2002). The Interactions between Sediments and Water. Canada: Kluwer Academic Publisher.

    Google Scholar 

  • Lim, W. Y., Aris, A. Z., Tengku Ismail, T. H., & Zakaria, M. P. (2013). Elemental hydrochemistry assessment on its variation and quality status in Langat River, Western Peninsular Malaysia. Environmental Earth Sciences, 70, 993–1004. doi:10.1007/s12665-012-2189-7.

    Article  CAS  Google Scholar 

  • Lin, C. Y., Musta, B., & Abdullah, M. H. (2013). Geochemical processes, evidence and thermodynamic behavior of dissolved and precipitated carbonate minerals in a modern seawater/freshwater mixing zone of a small tropical island. Applied Geochemistry, 29, 13–31. doi:10.1016/j.apgeochem.2012.10.029.

    Article  CAS  Google Scholar 

  • Mashiatullah, A., Chaudhary, M. Z., Ahmad, N., Javed, T., & Ghaffar, A. (2012). Metal pollution and ecological risk assessment in marine sediments of Karachi Coast, Pakistan. Environmental Monitoring and Assessment, 185(2), 1555–1565. doi:10.1007/s10661-012-2650-9.

    Article  Google Scholar 

  • Mason, B., & Moore, C. B. (1982). Principles of geochemistry (4th ed.). New York: Wiley and Sons.

    Google Scholar 

  • Moore, F., Esmaeili, K., & Keshavarzi, B. (2011). Assessment of heavy metals contamination in stream water and sediments affected by the Sungun Porphyry Copper Deposit, East Azerbaijan Province, Northwest Iran. Water Quality, Exposure and Health, 3, 37–49. doi:10.1007/s12403-011-0042-y.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Schwermetalle in den sediments des Rheins-Veranderungen seitt 1971. Umschan, 79, 778–783.

    Google Scholar 

  • Nieto, J. M., Sarmiento, A. M., Olías, M., Canovas, C. R., Riba, I., Kalman, J., & Delvalls, A. T. (2007). Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva estuary. Environment International, 33, 445–455.

    Article  Google Scholar 

  • Praveena, S. M., Ahmed, A., Radojevic, M., Abdullah, M. H., & Aris, A. Z. (2008). Multivariate and geoaccumulation index evaluation in mangrove surface sediment of Mengkabong Lagoon, Sabah. Bulletin of Environmental Contamination and Toxicology, 81, 52–56.

    Article  CAS  Google Scholar 

  • Rafiei, B., Bakhtiari Nejad, M., Hashemi, M., & Khodaei, A. S. (2010). Distribution of heavy metals around the Dashkasan Au mine. International Journal of Environmental Research, 4(4), 647–654.

    CAS  Google Scholar 

  • Rubio, B., Nombela, M. A., & Villas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 11, 968–980.

    Article  Google Scholar 

  • Schemel, L. E., Kimball, B. A., & Bencala, K. E. (2000). Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado. Applied Geochemistry, 15, 1003–1018.

    Article  CAS  Google Scholar 

  • Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Science of the United States (PNAS), 98(9), 5116–5121.

    Article  CAS  Google Scholar 

  • Varol, M., & Sen, B. (2012). Assessment of nutrient and heavy metal contamination in surface water and sediments of the Tigris River, Turkey. CATENA, 92, 1–10.

    Article  CAS  Google Scholar 

  • Wennrich, R., Mattusch, J., Morgenstern, P., Freyer, K., Treutler, H.-C., Stark, H.-J., Bruggemann, L., Paschke, A., Daus, B., & Weiss, H. (2004). Characterization of sediments in an abandoned mining area: a case study of Mansfeld region, Germany. Environmental Geology, 45, 818–833.

    Article  CAS  Google Scholar 

  • Yu, G. B., Liu, Y., Yu, S., Wu, S. C., Leung, A. O. W., Luo, X. S., Xu, B., Li, H. B., & Wong, M. H. (2011). Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments. Chemosphere, 85, 1080–1087.

    Article  CAS  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first and second author (Bibi Noorarlijannah Mohammad Ali and Chin Yik Lin) would like to thank UNU-GIST and World Federation Scientist (WFS) for the financial support and Dr. Sarva Mangala Praveena, Ms. Feona Isidore, Mr. Morius Bangkas, Mr. Neldin Geoffrey, Mr. Mohd. Syaufi Lamjin and Mr. Mohd. Recheidy for the assistance in the field and laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Yik Lin.

Additional information

Chin Yik Lin will be designated as corresponding author and will handle correspondence at all stages of refereeing and publication, also post publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Ali, B.N., Lin, C.Y., Cleophas, F. et al. Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environ Monit Assess 187, 4190 (2015). https://doi.org/10.1007/s10661-014-4190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4190-y

Keywords

Navigation