Skip to main content

Advertisement

Log in

Groundwater quality and hydrochemical properties of Al-Ula Region, Saudi Arabia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater quality monitoring is one of the most important aspects in groundwater studies in arid environments particularly in developing countries, like Saudi Arabia, due to the fast population growth and the expansion of irrigated agriculture and industrial uses. Groundwater samples have been collected from eight locations in Al-Ula in Saudi Arabia during June 2012 and January 2013 in order to investigate the hydrochemical characteristics and the groundwater quality and to understand the sources of dissolved ions. Physicochemical parameters of groundwater such as electrical conductivity, pH, total dissolved solid, and major cations and anions were determined. Chloride was found to be the dominant anion followed by HCO 3 and SO4 2−. Groundwater of the study area is characterized by the dominance of alkaline earths (Ca2+ + Mg2+) over alkali metals (Na+ + K+). The analytical results show that the groundwater is generally moderately hard and slightly alkaline in nature. The binary relationships of the major ions reveal that water quality of the Al-Ula region is mainly controlled by rock weathering, evaporation, and ion exchange reactions. Piper diagram was constructed to identify hydrochemical facies, and it was found that majority of the samples belong to Ca-Cl and mixed Ca-Mg-Cl facies. Chemical indices like chloro-alkali indices, sodium adsorption ratio, percentage of sodium, residual sodium carbonate, and permeability index were calculated. Also, the results show that the chemical composition of groundwater sources of Al-Ula is strongly influenced by lithology of country rocks rather than anthropogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abunayyan Trading Corporation and BRGM (Bureau de Recherches Géologiques et Minières). (2008). Investigations for Updating the Groundwater Mathematical Model (s) of the Saq Overlying Aquifers (Main Report). Published by the Ministry of Water and Electricity in Saudi Arabia. Available at: http://www.scribd.com/doc/16845648/Saq-Aquifer-Saudi-Arabia-2008 ;http://www.scribd.com/doc/16769693/FR-Vol-13-Geology. Accessed on March 17, 2012.

  • Al-Amry, A. S. (2008). Hydrogeochemistry and groundwater quality assessment in an arid region: a case study from Al Salameh Area, Shabwah, Yemen, The 3rd International Conference on Water Resources and Arid Environments, The 1st Arab Water Forum.

  • Al-Bassam, A. M., Hussein, T., & Sharaf, M. A. (1997). Hydrochemical evaluation of the Umm-er-Radhuma Aquifer system, Saudi Arabia. Hydrochemistry (Proceedings of the Rabat Symposium, April 1997) IAHS Publ. no. 244.

  • Al-Omran, A. M., El-Maghraby, S. E., Aly, A. A., Al-Wabel, M. I., Al-Asmari, Z. A., & Nadeem, M. E. (2013). Quality assessment of various bottled waters marketed in Saudi Arabia. Environmental Monitoring and Assessment, 185, 6397–6406.

    Article  CAS  Google Scholar 

  • Al-Otaibi, E. L. (2009). Physico-chemical quality of drinking water sources at Khamis Mushait, Assir, south-western Saudi Arabia. African Journal of Clinical and Experimental Microbiology, 10(2), 117–127.

    Article  Google Scholar 

  • Al-Shaibani, A. M. (2008). Hydrogeology and hydrochemistry of a shallow alluvial aquifer, western Saudi Arabia. Hydrogeology Journal, 16, 155–165.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (1998). Standard methods for the examination of water and wastewater, 20th edn. Washington

  • Appelo, C. A. J., & Postma, D. (1993). Geochemistry, groundwater and pollution (p. 536). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for the irrigation (p. 97). Irrigation drainage paper 29. Rome: FAO United Nations.

    Google Scholar 

  • Ballinger, D.G. (1989). Methods for chemical analysis of water and wastes, EPA. American Public Health Association. Standard methods for the examination of water and waste water, 17th ed. Washington, DC, 1989:4-45:4-67.

  • Bamousa, A. O., Matar, S. S., Daoudi, M., & Al-Doaan, M. I. (2013). Structural and geomorphic features accommodating groundwater of Al-Madinah City, Saudi Arabia. Arab Journal Geosciences, 6, 3127–3132.

    Article  Google Scholar 

  • Binda, P. L., & Ramsay, C. R. (1980). Earliest Phanerozic or latest Proterozic fossils from the Arabian Shield- A discussion. Precambrian Research, 13, 375–377.

    Article  Google Scholar 

  • Bob, M., Abd, R. N., Taher, S., & Elamin, A. (2014). Multi-objective Assessment of Groundwater Quality in Madinah City, Saudi Arabia Water. Quality Expositiones Health. doi:10.1007/s12403-014-0112-z.

    Google Scholar 

  • Bokhari, A. Y., & Khan, M. Z. A. (1992). Deterministic modeling of Al-Madinah Al-Munawarah groundwater quality using Lumped parameter approach. Journal of King Abdulaziz University: Earth Sciences, 5, 89–107.

    Google Scholar 

  • Choi, B. Y., Yun, S. T., Yu, S. Y., Lee, P. K., Park, S. S., Chae, G. T., & Mayer, B. (2005). Hydrochemistry of urban groundwater in Seoul, South Korea: effect of land-use and pollutant recharge. Environmental Geology, 48, 979–990.

    Article  CAS  Google Scholar 

  • Chow, V. T. (1964). Handbook of applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Cobbina, S. J., Nyame, F. K., & Obiri, S. (2012). Groundwater in the Sahelian region of Northern Ghana, West Africa. Research Journal Environmental Earth Science, 4(4), 482–2491.

    CAS  Google Scholar 

  • Davis S. N., & De Wiest R. J. (1966). Hydrogeology. New York: Wiley.

  • Demetriades, A. (2010). General ground water geochemistry of Hellas using bottled water samples. Journal of Geochemical Exploration, 107, 283–298.

    Article  CAS  Google Scholar 

  • Dixon, W., & Chiswell, B. (1992). The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 130, 299–338.

    Article  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology (p. 824). New York: Wiley.

    Google Scholar 

  • Donald, G. & Hadly, G. (1987). Explanatory notes to the Geological map of the Sahl Al Matran Quadrangle, sheet 26 C, Kingdom of Saudi Arabia, pp,1-24.

  • Doneen, L. D. (1964). Notes on water quality in agriculture. Published as a water sciences and engineering paper 4001. Dept. of Water Sciences and Engineering, University of California.

  • Eaton, F. M. (1950). Significance of carbonate in irrigation water. Soil Science, 69(2), 123–133.

    Article  CAS  Google Scholar 

  • Edgell, H. S. (1990). Geological framework of Saudi Arabia groundwater resources. Journal of King Abdulaziz University, Earth Sciences, 3, 267–286.

    Article  Google Scholar 

  • Edmunds, W. M., Cook, J. M., Darling, W. G., Kinniburgh, D. G., Miles, D. L., Bath, A. H., Morgan-jones, M., & Andrews, J. N. (1987). Baseline geochemical conditions in the Chalk aquifer, Berkshire, UK.: a basis for groundwater quality management. Applied Geochemistry, 2, 251–274.

    Article  CAS  Google Scholar 

  • Efe, S. I., Ogban, F. E., Horsfall, M., & Akporhonor, E. E. (2005). Seasonal variation of physico-chemical characteristics in water resources quality in western Niger Delta Region, Nigeria. Journal of Applied Sciences and Environmental Management, 9(1), 191–195.

    Google Scholar 

  • Emmannoel, V., Silva-Filho, R. G., Sobral, B., Christophe, E., Bernard, B., Silvia, M. S., Michel, D., Roland, S., & Julio, C. W. (2009). Groundwater chemical characterization of a Rio De Janeiro aquifer, SE-Brazil. Journal of South American Earth Sciences, 27, 100–108.

    Article  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Garcia, M. G., del-v Hidalgo, M., & Blessa, M. A. (2001). Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeology Journal, 9, 597–610.

    Article  CAS  Google Scholar 

  • Gimenez, E., & Morell, I. (1997). Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Catellon, Spain). Environmental Geology, 29(1/2), 118–131.

    CAS  Google Scholar 

  • Golditch, S. S. (1938). A study in rock weathering. The Journal of Geology, 46, 17.

    Article  Google Scholar 

  • Hem, J.O. (1985). Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water Suppl Pap 2254, US Geological Survey, Reston, VA 263 pp

  • Hem, J. D. (1991). Study and interpretation of the chemical characteristics of natural water (3rd ed., p. 264). India: Scientific Publishers. Book 2254.

    Google Scholar 

  • Hounslow, A. W. (1995). Water quality data: analysis and interpretation. Boca Raton: CRC.

    Google Scholar 

  • Hussein, M. T., Bazuhair, A. G., & Ageeb, A. E. (1992). Hydrogeology of the Saq Formation east of Hail, northern Saudi Arabia. Quarterly Journal of Engineering Geology, 25, 57–64.

    Article  Google Scholar 

  • Jalali, M. (2005). Major ion chemistry in the Bahar area, Hamadan, western Iran. Environmental Geology, 47, 763–772.

    Article  CAS  Google Scholar 

  • Jalali, M. (2009). Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran. Environmental Geology, 56, 1479–1488.

    Article  CAS  Google Scholar 

  • Jeong, C. H. (2001). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253, 194–210.

    Article  CAS  Google Scholar 

  • Khashogji, M. S., & El Maghraby, M. M. S. (2013). Evaluation of groundwater resources for drinking and agricultural purposes, Abar Al Mashi area, south Al Madinah Al Munawarah City, Saudi Arabia. Arab Journal of Geosciences, 6, 3929–3942.

    Article  Google Scholar 

  • Kortatsi, B. K. (2007). Hydrochemical framework of groundwater in the Ankobra Basin, Ghana. Aquatic Geochemistry, 13, 41–74.

    Article  CAS  Google Scholar 

  • Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341–351.

    Article  CAS  Google Scholar 

  • Lloyd, J. W., & Pirn, R. H. (1990). The hydrogeology and groundwater resources development of the Cambro-Ordovician sandstone aquifer in Saudi Arabia and Jordan. Journal of Hydrology, 121, 1–20.

    Article  Google Scholar 

  • Loizidou, M., & Kapetanios, E. G. (1993). Effect of leachate from landfills on underground quality. Science of the Total Environment, 128, 69–81.

    Article  CAS  Google Scholar 

  • Magaritz, M., Nadler, A., Koyumdjisky, H., & Dan, N. (1981). The use of Na/Cl ratio to trace solute sources in a semiarid zone. Water Resources Research, 17, 602–608.

    Article  CAS  Google Scholar 

  • Maiti, T. C. (1982). The dangerous acid rain. Science Reports, 9, 360–363.

    Google Scholar 

  • Majumdar, D., & Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders. Indian Journal of Environmental Health, 42(1), 28–39.

    CAS  Google Scholar 

  • McKillup, S. (2006). Probability helps you make a decision about your results". Statistics explained: an introductory guide for life scientists (1st ed., pp. 44–56). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ministry of Agriculture and Water (MAW) (1984). Water Atlas of Saudi Arabia. Riyadh, Saudi Arabia.

  • Ministry of Water and Electricity, & Kingdom of Saudi Arabia (MWE). (2008). Investigations for updating the groundwater mathematical models of the Saq and overlying aquifers. Kingdom of Saudi Arabia: Unpublished report on file, Ministry of Water and Electricity

  • Moghazi, H. M. and Al-Shoshan, A. A.: 1999, ‘A Study of Increasing Salinity of Water Wells in Al-Gassim Region, Saudi Arabia’, A paper presented in the 4th Gulf Water Conference, Manama, The State of Bahrain, 13–17 February

  • Moore, T.A., & Al-Rehalie, M.H. (1989). Geologic map of the Makkah Quadrangle, Sheet 21D. Kingdom of Saudi Arabia, Ministry of Petroleum and Mineral Resources, Directorate General of Mineral Resources. Jeddah, Saudi Arabia

  • Nazzal, Y., Ahmed, I., Al-Arifi, N. S. N., Ghrefat, H., Zaidi, F. K., El-Waheidi, M. M., Batayneh, A., & Zumlot, T. (2014). A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia. Environmental Monitoring and Assessment. doi:10.1007/s10661-014-3728-3.

    Google Scholar 

  • Nikolaidis, C., Mandalos, P., & Vantarakis, A. (2008). Impact of intensive agricultural practices on drinking water quality in the EVROS Region (NE GREECE) by GIS analysis. Environmental Monitoring and Assessment, 143, 43–50.

    Article  CAS  Google Scholar 

  • Olajire, A. A., & Imeokparia, F. E. (2001). Water quality assessment of Osun river: studies on inorganic nutrients. Environmental Monitoring and Assessment, 69(1), 17–28.

    Article  CAS  Google Scholar 

  • Ozturk, N., & Yilmaz, Y. Z. (2000). Trace elements and radioactivity levels in drinking water near Tuncbilek coal-fired power plant in Kutahya, Turkey. Water Research, 34, 704–708.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analysis. Tranansactions of the American Geophysical Union, 25, 914–928.

    Article  Google Scholar 

  • Ragunath, H. M. (1987). Groundwater (p. 563). New Delhi: Wiley.

    Google Scholar 

  • Raju, N. J. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhara Pradesh, South India. Environmental Geology, 52, 1067–1074.

    Article  CAS  Google Scholar 

  • Ramesh, K. B., & Jagadeewari, P. (2012). Hydrochemical characteristics of groundwater for domestic and irrigation purposes in Periyakulam Taluk of Theni District, Tamil Nadu. I. Research Journal of Environmental Sciences, 1, 19–27.

    Google Scholar 

  • Reimann, C., & Birke, M. (Eds.), 2010. Geochemistry of European Bottled Water. Borntraeger Science Publishers, Stuttgart. 268 pp. URL: http://www.schweizerbart.de/publications/detail/isbn/9783443010676/ Geochemistry-of-European-Bottled- Water-Last accessed on 5/9/2010.

  • Richards, L. A. (1954). Diagnosis and improvement of saline alkali soils: agriculture (Vol. 160. Handbook 60). Washington DC: US Department of Agriculture.

    Google Scholar 

  • Salinity Laboratory, U. S. (1954). Diagnosis and improvement of saline and alkaline soils. US Department of Agriculture Agriculture Hand Book, 60, 147,160.

    Google Scholar 

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern cape, South Africa. Journal of Hydrology, 139, 27–48.

    Article  CAS  Google Scholar 

  • Sanchez-Perez, J. M., & Tremolieres, M. (2003). Change in groundwater chemistry as a consequence of suppression of floods: the case of the Rhine floodplain. Journal of Hydrology, 270, 89–104.

    Article  CAS  Google Scholar 

  • SASO (Saudi Arabian Standards Organization) (1984). Bottled and Unbott1ed Drinking Water, SSA 409/1984, 2nd ed., 1996-03-13, ISSN: 1319-2302, Available from: SASO Information Center, P.O.Box.3437, Riyadh, 11471, Saudi Arabia, pp.1 -8.

  • Sawyer, G. N., McMcartly, D. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science (5th ed., p. 752). New York: McGraw Hill.

    Google Scholar 

  • Schoeller, H. (1977). Geochemistry of groundwater. In groundwater studies-an international guide for research and practice (Ch. 15, pp. 1–18). Paris:UNESCO.

  • Sharaf, M. A., & Hussein, M. T. (1996). Groundwater quality in the Saq aquifer, Saudi Arabia. Journal of Hydrological Sciences, 4(5), 683–696.

    Article  Google Scholar 

  • Shraim, A. M., Alsuhaimi, A. O., Al-Muzaini, K. O., Kurdi, K., & Al-Ameen, H. (2013). Quality assessment of groundwater of AlMadinah AlMunawarah city. Global NEST Journal, 15(3), 374–383.

    CAS  Google Scholar 

  • Srinivasamoorthy, K., Nanthakumar, C., & Vasanthavigar, M. (2011). Groundwater quality assessment from a hard rock terrain, Salem district of Tamilnadu, India. Arabian Journal of Geosciences, 4(1), 91–102.

    Article  CAS  Google Scholar 

  • Subba Rao, N., Surya Rao, P., Venktram Reddy, G., Nagamani, M., Vidyasagar, G., & Satyanarayana, N. L. V. V. (2012). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184, 5189–5214.

    Article  Google Scholar 

  • Subrahmanyam, K., & Yadaiah, P. (2001). Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India. Hydrogeology Journal, 9, 297–312.

    Article  CAS  Google Scholar 

  • Todd, K. D. (1980). Groundwater hydrology (2nd ed., pp. 29–55). New York: Wiley.

    Google Scholar 

  • Todd, D. K., & Mays, L. W. (2005). Groundwater Hydrology. John Wiley & Sons, Inc., p. 636. USEPA (2001) U.S. National Primary and Secondary Drinking Water Regularizations (NPDWRs). U.S. Environmental Protection Agencies

  • Toumi, N., Hussein, B. H. M., Rafrafi, S., & kassas, N. (2013). Dissolved nitrogen survey in groundwater resources in Al-Ula village, Madina El Monawara, Saudi Arabia. Catrina, 8(1), 37–42.

    Google Scholar 

  • Udayalaxmi, G., Himabindu, D., & Ramadass, G. (2010). Geochemical evaluation of groundwater quality in selected areas of Hyderabad, AP, India. Indian Journal of Science Technology, 3, 5.

    Google Scholar 

  • United Nations Environment Program (UNEP). (1999). Global environment outlook 2000. UK: Earth scan.

    Google Scholar 

  • Vincent, P. (2008). Saudi Arabia: an environmental overview. London/New York: Published by Taylor & Francis.

    Book  Google Scholar 

  • Vincent, P., & Kattan, F. (2006). Yardangs in the Cambrian Saq Sandstones, North-West Saudi Arabia. Zeitschrift für Geomorphologie, 52, 305–320.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water. Washington: USDA, Circular 969.

  • World Health Organization (WHO). (2004). Guidelines for drinking water quality (Vol. 1 recommendations (3rd)). Geneva: WHO.

    Google Scholar 

  • Zilberbrand, M., Rosenthal, E., & Shachnai, E. (2001). Impact of urbanization on hydrochemical evolution of groundwater and unsaturated-area gas composition in the coastal city of Tel Aviv, Israel. Journal of Contaminant Hydrology, 50, 175–208.

    Article  CAS  Google Scholar 

  • Zumlot, T., Ghrefat, H., Elawadi, E., Batayneh, A., Mogren, S., Laboun, A., Nazal, Y., Zaman, H., & Qaisy, S. (2013). Using multivariate statistical analyses to evaluate groundwater contamination in the northwestern part of Saudi Arabia. Environment and Earth Sciences, 70, 3277–3287.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their comments and suggestions that enhanced the manuscript. The authors thank the Deanship of Scientific Research at Taibah University in Saudi Arabia for funding this research, Grant Number 441/1433. The authors are also grateful to farm owners and farmers for allowing their wells to be studied. The assistance we received from staff members of the Chemistry Department, Faculty of Science and arts Al-Ula at Taibah University is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belal H. M. Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toumi, N., Hussein, B.H.M., Rafrafi, S. et al. Groundwater quality and hydrochemical properties of Al-Ula Region, Saudi Arabia. Environ Monit Assess 187, 84 (2015). https://doi.org/10.1007/s10661-014-4241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4241-4

Keywords

Navigation