Skip to main content
Log in

Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The chemical analysis of 129 groundwater samples in the Kadkan area, Khorasan-e-Razavi Province, NE of Iran was evaluated to determine the hydrochemical processes, assessment of groundwater quality for irrigation purposes, corrosiveness, and scaling potential of the groundwater. Accordingly, the suitability of groundwater for irrigation was evaluated based on the sodium adsorption ratio, residual sodium carbonate, sodium percent, salinity hazard, and US Salinity Laboratory hazard diagram. Based on the electrical conductivity and sodium adsorption ratio, the dominant classes are C3–S1, C3–S2, C2–S1, and C4–S2. According to the Wilcox plot, about 50 % of the samples fall in the “Excellent to Good” and “Good to Permissible” classes. Besides, the Langelier saturation index, Ryznar stability index (RSI), Larson–Skold index, and Puckorius scaling index were evaluated for assessing the corrosiveness and scaling potential of the groundwater. Corrosiveness and scaling indices stated that the majority of samples are classified into “Aggressive” and “Very Aggressive” category. In addition, chloride and sulfate interfere in 90 % of the samples. Assessment of hydrochemical characteristics indicates Na-Mg-Cl as the predominant hydrochemical type. Spatial distribution of hydrochemical parameters indicates that hydrochemical processes are influenced by geology and hydrogeology of Kadkan aquifer. The Gibbs plots gave an indication that groundwater chemistry in this area may have acquired the chemistry mainly from evaporation and mineral precipitation. Grouping the samples based on Q-mode hierarchical cluster analysis helped to more separation of similar samples. The R-mode HCA grouped analyzed parameters into two groups based on similarity of hydrochemical characteristics. As a result, the samples collected in northern and southern parts of the study area show the best quality (i.e., lowest salinity) for some purposes such as irrigation and drinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alberto, W. D., Del Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & De Los Angeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality: a case study, suquia river basin (Cordoba-Argentina). Water Research, 35(12), 2881–2894.

    Article  CAS  Google Scholar 

  • Andre, L., Franceschi, M., Pouchan, P., & Atteia, O. (2005). Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Journal of Hydrology, 305, 40–62.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1996). Geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Google Scholar 

  • Azaza, F., Ketata, M., Bouhlila, R., Gueddari, M., & Riberio, L. (2011). Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss–Koutine aquifer, southeastern Tunisia. Environmental Monitoring and Assessment, 174, 283–98.

    Article  Google Scholar 

  • Baghvand, A., Nasrabadi, T., Bidhendi, N. G., Vosoogh, A., Karbassi, A., & Mehrdadi, N. (2010). Groundwater quality degradation of an aquifer in Iran central desert. Desalination, 260, 264–275.

    Article  CAS  Google Scholar 

  • Bohlke, J. K. (2002). Groundwater recharge and agricultural contamination. Hydrogeology Journal, 10, 153–179.

    Article  CAS  Google Scholar 

  • Chin, D. A. (2006). Water quality engineering in natural systems. Hoboken: Wiley.

    Book  Google Scholar 

  • Davil, M. F., Mahvi, A. H., Norouzi, M., Mazloomi, S., Amarluie, A., Tardast, A., & Karamitabar, Y. (2009). Survey of corrosion and scaling potential produced water from Ilam water treatment plant. World Applied Science Journal, 7, 01–06.

    CAS  Google Scholar 

  • Davis, J. C. (2002). Statistics and data analysis in geology. New York: Wiley.

    Google Scholar 

  • Eaton, E. M. (1950). Significance of carbonate in irrigation water. Soil Science, 69, 12–133.

    Article  Google Scholar 

  • Farnham, I. M., Stetzenbach, K. J., Singh, A. K., & Johannesson, K. H. (2002). Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and Intelligent Laboratory Systems, 60, 265–281.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 17, 1088–1090.

    Article  Google Scholar 

  • Guey-Shin, S., Bai-You, C., Chi-Ting, C., Pei-Hsuan, Y., & Tsun-Kuo, C. (2011). Applying factor analysis combined with Kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. International Journal of Environmental Research and Public Health, 8, 1084–1109.

    Article  Google Scholar 

  • Guler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian wells-Owens valley area, Southeastern California, USA. Journal of Hydrology, 285, 177–198.

    Article  CAS  Google Scholar 

  • Gupta, S., Dandele, O. S., Verma, M. B., & Maithani, P. B. (2009). Geochemical assessment of groundwater around Macherla Karempudi area, Guntur district, Andhra Pradesh. Journal of the Geological Society of India, 73, 202–212.

    Article  CAS  Google Scholar 

  • Handa, B. K. (1969). Description and classification of media for hydro-geochemical investigations. Symposium on Ground Water Studies in Arid and Semiarid Regions, Roorkee.

  • Jalali, M. (2005). Major ion chemistry in the Bahar area, Hamedan, western Iran. Environmental Geology, 47, 763–772.

    Article  CAS  Google Scholar 

  • Jalali, M. (2006). Chemical characteristics of groundwater in parts of mountainous region, Alvand, Hamedan, Iran. Environmental Geology, 51, 433–446.

    Article  CAS  Google Scholar 

  • Jalali, M. (2007). Salinization of groundwater in arid and semi-arid zones: an example Tajarak, western Iran. Environmental Geolology, 52, 1133–1149.

    Article  CAS  Google Scholar 

  • Jalali, M., & Kolahchi, Z. (2008). Groundwater quality in an irrigated, agricultural area of northern Malayer, western Iran. Nutrient Cycling in Agroecosystems, 80, 95–105.

    Article  Google Scholar 

  • Jalali, M. (2010). Groundwater geochemistry in the Alisadr, Hamadan, Western Iran. Environmental Monitoring and Assessment, 166(1–4), 359–369.

    Article  CAS  Google Scholar 

  • Jevaprabha, C., Sathiyanarayanan, S., Muralidharam, S., & Venkatachari, G. (2006). Corrosion inhibition of iron in 0.5 mol L−1 H2SO4 by halide ions. Journal of the Brazilian Chemical Society, 17, 61–67.

    Article  Google Scholar 

  • Kannan, K. (1991). Fundamentals of environmental pollution. New Delhi: Chand and company limited.

    Google Scholar 

  • Kuells, C., Adar, E. M., & Udluft, P. (2000). Resolving patterns of ground water flow by inverse hydrochemical modeling in Semi-Arid Kalahari Basin. Tracers Model Hydrogeology, 262, 447–451.

    CAS  Google Scholar 

  • Kumar, H., Saini, V., Kumar, D., & Chaudhary, R. S. (2009). Influence of trisodium phosphate (TSP) anti-salant on the corrosion of carbon steel in cooling water systems. Indian Journal of Chemical Technology, 16, 401–410.

    CAS  Google Scholar 

  • Kvítek, T., Zla’bek, P., Bystricky, V., Fucı’k, P., Lexa, M., Gergel, J., Nova’k, P., & Ondr, P. (2009). Changes of nitrate concentrations in surface waters influenced by land use in the crystalline complex of the Czech Republic. Physics and Chemistry of the Earth, 34(8–9), 541–551.

    Article  Google Scholar 

  • Langelier, W. F. (1936). The analytical control of anti-corrosion water treatment. American Water Works Association, 28, 1500–1521.

    CAS  Google Scholar 

  • Larson, T. E., & Skold, R. V. (1958). Laboratory studies relating mineral water quality of water on corrosion of steel and cast iron. Corrosion, 14, 285–288.

    Google Scholar 

  • Lloyd, J. W., & Heathcote, J. A. (1985). Natural inorganic hydrochemistry in relation to groundwater: an introduction. Oxford: Clarendon.

    Google Scholar 

  • Mahdavi, M. (2007). Applied hydrology. Iran: Tehran University Publication (In Persian).

    Google Scholar 

  • Merkel, B., & Planer-Friedrich, B. (2008). Groundwater geochemistry—a practical guide to modeling of natural and contaminated aquatic systems. Berlin: Springer.

    Google Scholar 

  • Omo-Irabor, O. O., Olobaniyi, S. B., Oduyemi, K., & Akunna, J. (2008). Surface and groundwater water quality assessment using multivariate analytical methods: a case study of the Western Niger Delta, Nigeria. Physics and Chemistry of the Earth, 33(8–13), 666–673.

    Article  Google Scholar 

  • Papatheodorou, G., Demopouloua, G., & Lambrakis, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193, 759–776.

    Article  Google Scholar 

  • Pazand, K., Hezarkhani, A., Ghanbari, Y., & Aghavali, N. (2012). Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran. Environmental Earth Sciences, 67, 1131–1143.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analysis. Transactions American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Rabbani, D., Mirranzadeh, M. B., & Motlagh, A. A. (2008). Study for determination of industrial water corrosivity in Kashan Fajre Sepahan galvanizing mills during 2005–2006, Iran. Pakistan Journal of Biological Sciences, 11, 131–134.

    Article  CAS  Google Scholar 

  • Raghunath, H. M. (2003). Groundwater. New Delhi: New Age International (P) Ltd.

    Google Scholar 

  • Rao, N. S. (2002). Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Geology, 41, 552–562.

    Article  CAS  Google Scholar 

  • Rao, S. V. L. (2003). Cluster analysis of groundwater quality data of Venkatagiri Taluq, Nellore district, Andhra Pradesh. Journal of the Geological Society of India, 62, 447–454.

    CAS  Google Scholar 

  • Ravikumar, P., & Somashekar, R. K. (2012). Assessment and modelling of groundwater quality data and evaluation of their corrosiveness and scaling potential using environmetric methods in Bangalore South Taluk, Karnataka State, India. Water Resources, 39, 446–473.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkaline soils. Washington, DC: US Department of Agriculture.

    Google Scholar 

  • Rowell, D. L. (1994). Soil science: methods and applications. New York: Longman and Scientific Technical.

    Google Scholar 

  • Ryznar, J. W. (1944). A new index for determining amount of calcium carbonate scale formed by water. American Water Works Association, 36, 472–486.

    CAS  Google Scholar 

  • Sargaonkar, A., & Deshpande, V. (2003). Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environmental Monitoring and Assessment, 89, 43–67.

    Article  CAS  Google Scholar 

  • Sasidhar, P., & Vijay Kumar, S. B. (2008). Assessment of groundwater corrosiveness for unconfined aquifer system at Kalpakkam. Environmental Monitoring and Assessment, 145, 445–452.

    Article  CAS  Google Scholar 

  • Sawyer, G. N., & McCarthy, D. L. (1967). Chemistry of sanitary engineers. New York: McGraw Hill.

    Google Scholar 

  • Schroeder, H. A. (1960). Relations between hardness of water and death rates from certain chronic and degenerative diseases in the United States. Journal of Chronic Disorders, 12, 586–591.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22, 464–475.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 538, 355–374.

    Article  CAS  Google Scholar 

  • Sivasankar, V., & Ramachandramoorthy, T. (2009). An investigation on the pollution status of holy aquifers of Rameswaram, Tamil Nadu, India. Environmental Monitoring and Assessment, 156, 307–315.

    Article  CAS  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47, 1099–1110.

    Article  CAS  Google Scholar 

  • Swan, A. R. H., & Sandilands, M. (1995). Introduction to geological data analysis. Oxford: Blackwell.

    Google Scholar 

  • Thyne, G., Guler, C., & Poeter, E. (2004). Sequential analysis of hydrochemical data for watershed characterization. Groundwater, 42(5), 1–12.

    Article  Google Scholar 

  • Todd, D. K. (1959). Groundwater hydrology. New York: Wiley.

    Google Scholar 

  • Todd, D. K., & Mays, L. W. (2005). Ground-water hydrology. New York: Wiley.

    Google Scholar 

  • Umar, A., Umar, R., & Ahmad, M. S. (2001). Hdrogeological and hydrochemical framework of regional aquifer system in Kali-Ganga sub-basin India. Environmental Geology, 40(4–5), 602–661.

    Article  CAS  Google Scholar 

  • US Department of Agriculture (USDA). (1954). Diagnosis and improvement of saline and alkali soils. Washington, DC: US Department of Agriculture.

    Google Scholar 

  • Vaezi-Pour, M. J., Alavi-Tehrani, N., Behrouzi, A., & Kholghi, M. H. (1991). Geological map of Torbat-e-Heydarieh 1:250,000. Iran: Geological Survey of Iran.

    Google Scholar 

  • Wilcox, L. V. (1995). Classification and use of irrigation waters. Washington, DC: US Department of Agriculture.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Esmaeili-Vardanjani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili-Vardanjani, M., Rasa, I., Amiri, V. et al. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran. Environ Monit Assess 187, 53 (2015). https://doi.org/10.1007/s10661-014-4261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4261-0

Keywords

Navigation