Skip to main content

Advertisement

Log in

Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha−1 in BU forest to 294.8 Mg ha−1 for the AP forest. The understory biomass ranged from 0.16 Mg ha−1 in PD forest to 2.36 Mg ha−1 in PW forest. Deadwood biomass ranged from 1.5 Mg ha−1 in PD forest to 14.9 Mg ha−1 for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha−1 in BU and JR forests to 3.1 Mg ha−1 in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha−1 across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1–91.4 Mg ha−1, respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0–30-cm soil, about 55 % was stored in the upper 0–10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is influenced by vegetation type, stand structure, management history, and altitude. Our results reveal that a higher percentage (63 %) of C is stored in biomass and less in soil in these temperate forests except at the higher elevation broad-leaved BU forest. Results from this study will enhance our ability to evaluate the role of these forests in regional and global C cycles and have great implications for planning strategies for conservation. The study provides important data for developing and validating C cycling models for temperate forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baishya, R., & Barik, S. K. (2011). Estimation of tree biomass, carbon pool and net primary production of an old growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Annals Forest Science, 68, 727–736.

    Article  Google Scholar 

  • Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., Hutyra, L., Saleska, S. R., Fitzjarrald, D., & Moore, K. (2001). Factors controlling long and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688–1691.

    Article  CAS  Google Scholar 

  • Bhat, J. A., Iqbal, K., Kumar, M., Negi, A. K., & Todaria, N. P. (2013). Carbon stock of trees along an elevational gradient in temperate forests of Kedarnath Wildlife Sanctuary. Forest Science Practice, 15(2), 137–143.

    Article  CAS  Google Scholar 

  • Bradford, J. B., Birdsey, R. A., Joyce, L. A., & Ryan, M. G. (2008). Tree age, disturbance history and carbon stocks and fluxes in sub-alpine rocky mountain forests. Global Change Biology, 14(12), 2882–2897.

    Article  Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry paper 134. Food and Agricultural Organization, Rome, 55 p.

  • Brown, S., Gillespie, A., & Lugo, A. (1989). Biomass estimation methods for tropical forests with applications to forestry inventory data. Forest Science, 35, 881–902.

    Google Scholar 

  • Brown, S. L., Schrooder, P., & Kern, J. S. (1999). Spatial distribution of biomass in forests of the eastern USA. Forest Ecology Management., 123(1), 81–90.

    Article  Google Scholar 

  • Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111, 1–11.

    Article  Google Scholar 

  • Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., & Buitenhuis, E. T. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. PNAS, 104, 18866–18870.

    Article  CAS  Google Scholar 

  • Cao, J., Wang, X., Tian, Y., Wen, Z., & Zha, T. (2012). Patterns of carbon allocation across three different stages of stand development of a Chinese Pine (Pinus tabulaeformis) forest. Ecological Research, 27(5), 883–892.

    Article  Google Scholar 

  • Chapin, F. S., Matson, P. A., & Mooney, H. A. (2002). Principles of terrestrial ecosystem ecology. New York: Springer.

    Google Scholar 

  • Chen, D., Zhang, C., Wu, J., Zhou, L., Lin, Y., & Fu, S. (2011). Subtropical plantations are large carbon sinks: evidence from two monoculture plantations in South China. Agriculture and Forest Meteorology, 151, 1214–1225.

    Article  Google Scholar 

  • Chhabra, A., Parila, S., & Dadhwal, V. K. (2002). Growing stock based forest biomass estimate of India. Biomass and Bioenergy, 22, 187–194.

    Article  Google Scholar 

  • Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., & Ni, J. (2001). Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11(2), 356–370.

    Article  Google Scholar 

  • Clark, K. L., Gholz, H. L., & Castro, M. (2004). Carbon dynamics along a chronosequence of slash pine plantations in North Florida. Ecological Applications, 14, 1154–1171.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2006). IPCC guidelines for national greenhouse gas inventories, vol 4: agriculture, forestry and other land use. Cambridge University Press.

  • De Vos, B., Lettens, S., Muys, B., & Deckers, J. A. (2007). Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use Management., 23, 221–229.

    Article  Google Scholar 

  • Eriksson, E., & Berg, S. (2007). Implications of environmental quality objectives on the potential of forestry to reduce net CO2 emissions—a case study in the central Sweden. Forestry, 80(2), 99–111.

    Article  Google Scholar 

  • Food and Agricultural Organisation (FAO). (2010). Global forest resources assessment 2010. For. Pap.163, FAO, Rome.

  • FSI. (1996). Volume equations for forests of India, Nepal and Bhutan. India: Forest Survey of India, Ministry of Environment and Forests. Govt. of India.

    Google Scholar 

  • FSI. (2011). State of forest report. Dehradun: Forest Survey of India.

    Google Scholar 

  • Gairola, S., Sharma, C. M., Ghildiyal, S. K., & Suyal, S. (2011). Live tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Current Science, 100(12), 1862–1870.

    Google Scholar 

  • Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S., Houghton, R. A., Jenkins, J. C., Kohlmaier, G. H., Kurz, W., Liu, S., Nabuurs, G. J., Nillson, S., & Shvidenko, A. Z. (2002). Forest carbon sinks in the Northern Hemisphere. Ecological Applications, 12, 891–899.

    Article  Google Scholar 

  • Gower, S. T., Vogel, J. G., Norman, J. M., Kucharik, C. J., Steele, S. J., & Stow, T. K. (1997). Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce strands in Saskatchewan and Manitoba. Canadian Journal of Geophysical Research, 102(D24), 29029–29041.

    Article  CAS  Google Scholar 

  • Haripriya, G. S. (2000). Estimates of biomass in Indian forests. Biomass and Bioenergy, 19, 245–258.

    Article  Google Scholar 

  • He, Y., Qin, L., Li, Z., Liang, X., Shao, M., & Tan, L. (2013). Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. Forest Ecology and Management, 295, 193–198.

    Article  Google Scholar 

  • Hoover, C. M., Leak, W. B., & Keel, B. G. (2012). Benchmark carbon stocks from old-growth forests in northern New England, USA. Forest Ecology and Management, 266, 108–114.

    Article  Google Scholar 

  • Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(5), 945–958.

    Article  Google Scholar 

  • Houghton, R. A. (2007). Balancing the global carbon budget. Annual Review of Earth Planetary Sciences, 35, 313–347.

    Article  CAS  Google Scholar 

  • Huang, J. H., Han, X. G., & Chen, L. Z. (1998). Studies on litter decomposition processes in a temperate forest ecosystem. I. Change of organic matter in Oak (Querqus liaotungensis Koidz) twigs. Ecological Research, 13, 163–170.

    Article  Google Scholar 

  • Jandl, R., Linder, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D. W., Minkkinen, K., & Byrne, K. A. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 253–268.

    Article  CAS  Google Scholar 

  • Kindermann, G. E., McCallum, I., Fritz, S., & Obersteiner, M. (2008). A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Finnica, 42, 387–396.

    Google Scholar 

  • Kueppers, M. L., Southon, J., Baer, P., & Harte, J. (2004). Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia, 141, 641–651.

    Article  Google Scholar 

  • Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242–258.

    Article  Google Scholar 

  • Latte, N., Colinet, G., Fayolle, A., Lejeume, P., Hebert, J., Claessens, H., & Bauwens, S. (2013). Description of a new procedure to estimate the carbon stocks of all forest pools and impact assessment of methodological choices on the estimates. European Journal of Forest Research, 132, 565–577. doi:10.1007/s 10342-0701-6.

    Article  Google Scholar 

  • Law, B. E., Sun, O. J., Campbell, J., Van Tuyl, S., & Thornton, P. E. (2003). Changes in carbon storage and fluxes in a chronosequence of Ponderosa pine. Global Change Biology, 9, 510–524.

    Article  Google Scholar 

  • Li, X., Yi, M. J., Son, Y., Park, P. S., Lee, K. H., et al. (2011). Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in Central Korea. Journal of Plant Biology, 54(1), 33–42.

    Article  CAS  Google Scholar 

  • Li, C., Zha, T., Liu, J., & Jia, X. (2013). Carbon and nitrogen distribution across a chronosequence of secondary lacebark pine in China. The Forestry Chronicle, 89(2), 192–198.

    Article  Google Scholar 

  • Lin, K. C., Duh, C. T., Ma, F. C., & Wang, H. H. (2003). Biomass and nutrient content of woody debris in the Fushan subtropical broadleaf forest of northeastern Taiwan. Taiwan Journal of Forest Research, 18, 235–244.

    Google Scholar 

  • MacDicken, K. G., Wolf, G. V., & Briscoe, C. B. (1991). Standard research methods for multipurpose tree and shrubs (p. 92). USA: MPTS Network.

    Google Scholar 

  • Manhas, R. K., Negi, J. D. S., Kumar, R., & Chauhan, P. S. (2006). Temporal assessment of growing stock, biomass and carbon stock of Indian forests. Climate Change, 74, 191–221.

    Article  CAS  Google Scholar 

  • Mohanraj, R., Sarvanan, J., & Dhanakumar, S. (2011). Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soil. iForest - Biogeosciences and Forestry, 4, 61–65.

    Article  Google Scholar 

  • Negi, J. D. S., Manhas, R. K., & Chauhan, P. S. (2003). Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Current Science, 85(11), 1528–1531.

    CAS  Google Scholar 

  • Nizami, S. M. (2012). The inventory of the carbon stocks in sub-tropical forests of Pakistan for reporting under Kyoto protocol. Journal of Forestry Research, 23(3), 377–384.

    Article  CAS  Google Scholar 

  • Pan, Y., Birdsey, R., Fang, J., Houghton, R., Kauppi, P., Kurz, W., Phillips, O., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., Mcguire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    Article  CAS  Google Scholar 

  • Peichl, M., & Arain, M. A. (2006). Above- and belowground ecosystem biomass in an age sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140(1), 51–63.

    Article  Google Scholar 

  • Ponce, A. M., & Galicia, L. (2010). Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry, 83(5), 497–506.

    Article  Google Scholar 

  • Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests, biome patterns related to forest age. Global Change Biology, 10, 2052–2077.

    Article  Google Scholar 

  • Sharma, C. M., Baduni, N. P., Gairola, S., Ghildiyal, S. K., & Suyal, S. (2010). Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. Forest Ecology and Management, 260, 2170–2179.

    Article  Google Scholar 

  • Sharma, C. M., Gairola, S., Baduni, N. P., Ghildiyal, S. K., Suyal, S. (2011). Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. Journal of Bioscience, 36(4), 701–708.

  • Singh, S. P., Adhikari, B. S., & Zobel, D. B. (1994). Biomass productivity, leaf longevity and forest structure in the central Himalaya. Ecological Monograph, 64, 401–421.

    Article  Google Scholar 

  • Smithwick, E. A. H., Harmon, M. E., Remillard, S. M., Acker, S. A., & Franklin, J. F. (2002). Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecological Applications, 12, 1303–1317.

    Article  Google Scholar 

  • Somogyi, Z., Cienciala, E. E., Maakipaa, E. R., Muukkonen, P., Lehtonen, A., & Weiss, P. (2007). Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126, 197–207.

    Article  Google Scholar 

  • Son, Y. H., Hwang, J. W., Kim, Z. S., Lee, W. K., & Kim, J. S. (2001). Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology, 78, 251–255.

    Article  CAS  Google Scholar 

  • Taylor, A. R., Wang, J. R., & Chen, H. Y. (2007). Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada. Canadian Journal of Forest Research, 37(11), 2260–2269.

    Article  CAS  Google Scholar 

  • Terakunpisut, J. N., Gajaseni, & Ruankawe, N. (2007). Carbon sequestration potential in aboveground biomass of Thong Phaphun national forest, Thailand. Applied Ecology and Environmental Research, 5, 93–102.

    Article  Google Scholar 

  • Tewksbury, C. E., & Miegroet, H. V. (2007). Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce-fir forest. Canadian Journal of forest Research, 37, 1161–1172.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., & Singh, J. S. (1987). Analysis of forest land-use and vegetation in apart of Central Himalaya, using aerial photographs. Environmental Conservation, 14, 233–244.

    Article  Google Scholar 

  • Tsui, C. C., Tsai, C. C., & Chen, Z. S. (2013). Soil organic carbon stocks in relation to altitudinal gradients in volcanic ash soils of Taiwan. Geoderma, 209–210, 119–127.

    Article  Google Scholar 

  • Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumagi, M., & Lohmus, K. (2012). Biomass production and carbon sequestration in a fertile silver birch (Betula pendula) forest chronosequence. Forest Ecology and Management, 267, 117–126.

    Article  Google Scholar 

  • Walkley, A. (1947). An estimation of methods for determining organic carbon and nitrogen in soils. Journal of Agriculture Science, 25, 598–609.

    Article  Google Scholar 

  • Wang, X., Fang, J., & Zhu, B. (2008). Forest biomass and root-shoot allocation in northeast China. Forest Ecology and Management, 255, 4007–4020.

    Article  Google Scholar 

  • Wei, Y., Li, M., Chen, H., Lewis, B. J., Yu, D., Zhou, W., Fang, X., Zhao, W., & Dai, L. (2013). Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in Northeast China. PLOS ONE, 8(8), e72201. doi:10.1371/journal.pone.oo72201.

    Article  CAS  Google Scholar 

  • Whittaker, R. H., & Woodwell, G. M. (1986). Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. Journal of Ecology, 56, 1–25.

    Article  Google Scholar 

  • Yang, Y. S., Guo, J. F., Chen, G. S., Xie, J. S., Zhen, I., & Zhao, J. (2005). Carbon and nitrogen pools on Chinese fir and evergreen broadleaved forests and changes associated with felling and burning in mid-subtropical China. Forest Ecology and Management, 216, 216–226.

    Article  Google Scholar 

  • Yuan, Z., Gazol, A., Lin, F., Ye, J., Shi, S., Wang, X., Wang, M., & Hao, Z. (2013). Soil organic carbon in an old-growth temperate forest: spatial pattern, determinants and bias in its quantification. Geoderma, 195–196, 48–55.

    Article  Google Scholar 

  • Zhang, Q. Z., & Wang, C. K. (2010). Carbon density and distribution of six Chinese temperate forests. Science China Life Sciences., 53(7), 831–840.

    Article  CAS  Google Scholar 

  • Zhang, Y., Gu, F., Liu, S., Liu, Y., & Li, C. (2013). Variation of carbon stocks with forest types in subalpine region of southwestern China. Forest Ecology Management, 300, 88–95.

    Article  Google Scholar 

  • Zhao, J., Kang, F., Wang, L., Yu, X., Zhao, W., Song, X., Zhang, Y., Chen, F., Sun, Y., He, T., & Han, H. (2014). Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests. PLoS ONE, 9(4), e94966. doi:10.1371/journal.pone.0094966.

    Article  Google Scholar 

  • Zheng, H., Ouyang, Z., Xu, W., Wang, X., Miao, H., Li, X., & Tian, Y. (2008). Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management, 255(3), 1113–1121.

    Article  Google Scholar 

  • Zhu, B., Wang, X., Fang, J., Piao, S., Shen, H., Zhao, S., & Peng, C. (2010). Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research, 123, 439–452.

    Article  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the financial support provided by University Grants Commission (UGC), Government of India for its fellowship, and Forest Departments of Anantnag & Lidder Divisions in J&K, India, for permission and help. We are also thankful to the Department of Botany, Islamia College of Science and Commerce for their laboratory facilities. We thank Dr. S. Jayakumar, Associate Professor, Department of Ecology and Environmental Sciences, Pondicherry University, for map preparation. We thank the anonymous reviewers for their valuable comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaiah Sundarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, J.A., Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environ Monit Assess 187, 55 (2015). https://doi.org/10.1007/s10661-015-4299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4299-7

Keywords

Navigation