Skip to main content

Advertisement

Log in

Transfer of heavy metals through terrestrial food webs: a review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    Article  CAS  Google Scholar 

  • Alonso, M. L., Benedito, J. L., Miranda, M., Castillo, C., Hernández, J., & Shore, R. F. (2002a). Interactions between toxic and essential trace metals in cattle from a region with low levels of pollution. Archives of Environmental Contamination and Toxicology, 42, 165–172.

    Article  CAS  Google Scholar 

  • Alonso, M. L., Benedito, J. L., Miranda, M., Castillo, C., Hernández, J., & Shore, R. F. (2002b). Cattle as biomonitors of soil arsenic, copper, and zinc concentrations in Galicia (NW Spain). Archives of Environmental Contamination and Toxicology, 43, 103–108.

    Article  CAS  Google Scholar 

  • Alonso, M. L., Benedito, J. L., Miranda, M., Castillo, C., Hernández, J., & Shore, R. F. (2003). Mercury concentrations in cattle from NW Spain. Science of the Total Environment, 302, 93–100.

    Article  Google Scholar 

  • Amaya, E., Gil, F., Olmedo, P., Fernandez-Rodriguez, M., Fernandez, M. F., & Olea, N. (2013). Placental concentrations of heavy metals in a mother-child cohort. Environmental Research, 120, 63–70.

    Article  CAS  Google Scholar 

  • Anderson, B., de Peyster, A., Gad, S. C., Hakkinen, P. J. B., Kamrin, M., Locey, B., Mehendale, H. M., Pope, C., Shugart, L., & Wexler, P. (2005). Encyclopedia of toxicology (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Angle, J. S., & Linacre, N. A. (2005). Metal phytoextraction—a survey of potential risks. International Journal of Phytoremediation, 7, 241–254.

    Article  CAS  Google Scholar 

  • Appleton, J., Lee, K. M., Sawicka-Kapusta, K., Damek, M., & Cooke, M. (2000). The heavy metal content of the teeth of the bank vole (Clethrionomys glareolus) as an exposure marker of environmental pollution in Poland. Environmental Pollution, 110, 441–449.

    Article  CAS  Google Scholar 

  • Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160, 83–89.

    Article  CAS  Google Scholar 

  • Bååth, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47, 335–379.

    Article  Google Scholar 

  • Babin-Fenske, J. J., & Anand, M. (2010). Terrestrial insect communities and the restoration of an industrially perturbed landscape: assessing success and surrogacy. Restoration Ecology, 18, 73–84.

    Article  Google Scholar 

  • Babin-Fenske, J., & Anand, M. (2011). Patterns of insect communities along a stress gradient following decommissioning of a Cu-Ni smelter. Environmental Pollution, 159, 3036–3043.

    Article  CAS  Google Scholar 

  • Bahadorani, S., & Hilliker, A. J. (2009). Biological and behavioral effects of heavy metals in Drosophila melanogaster adults and larvae. Journal of Insect Behavior, 22, 399–411.

    Article  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders—strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Walker, P. L. (1989). Ecophysiology of metal uptake by tolerant plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants—evolutionary aspects (pp. 155–177). Boca Raton: CRC.

    Google Scholar 

  • Bayley, M., Baatrup, E., Heimbach, U., & Bjerregaard, P. (1995). Elevated copper levels during larval development cause altered locomotor behavior in the adult carabid beetle Pterostichus cupreus L. (Coleoptera: Carabidae). Ecotoxicology and Environmental Safety, 32, 166–170.

    Article  CAS  Google Scholar 

  • Beernaert, J., Scheirs, J., Leirs, H., Blust, R., & Verhagen, R. (2007). Non-destructive pollution exposure assessment by means of wood mice hair. Environmental Pollution, 145, 443–451.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., & Glick, B. R. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology & Biochemistry, 37, 241–250.

    Article  CAS  Google Scholar 

  • Behmer, S. T., Lloyd, C. M., Raubenheimer, D., Stewart-Clark, J., Knight, J., Leighton, R. S., Harper, F. A., & Smith, J. A. C. (2005). Metal hyperaccumulation in plants: mechanisms of defence against insect herbivores. Functional Ecology, 19, 55–66.

    Article  Google Scholar 

  • Beyer, W. N., Connor, E. E., & Gerould, S. (1994). Estimates of soil ingestion by wildlife. Journal of Wildlife Management, 58, 375–382.

    Article  Google Scholar 

  • Bitterli, C., Bañuelos, G. S., & Schulin, R. (2010). Use of transfer factors to characterize uptake of selenium by plants. Journal of Geochemical Exploration, 107, 206–216.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., & Huang, J. W. (2000). Phytoextraction of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment (pp. 53–70). Toronto: Wiley.

    Google Scholar 

  • Blottner, S., Frölich, K., Roelants, H., Streich, J., & Tataruch, F. (1999). Influence of environmental cadmium on testicular proliferation in roe deer. Reproductive Toxicology, 13, 261–267.

    Article  CAS  Google Scholar 

  • Boshoff, M., De Jonge, M., Dardenne, F., Blust, R., & Bervoets, L. (2014). The impact of metal pollution on soil faunal and microbial activity in two grassland ecosystems. Environmental Research, 134, 169–180.

    Article  CAS  Google Scholar 

  • Bourioug, M., Gimbert, F., Alaoui-Sehmer, L., Benbrahim, M., Aleya, L., & Alaoui-Sossé, B. (2015). Sewage sludge application in a plantation: effects on trace metal transfer in soil–plant–snail continuum. Science of the Total Environment, 502, 309–314.

    Article  CAS  Google Scholar 

  • Boyd, R. S. (2002). Does elevated body Ni concentration protect insects against pathogens? A test using Melanotrichus boydi (Heteroptera: Miridae). American Midland Naturalist, 147, 225–236.

    Article  Google Scholar 

  • Boyd, R. S. (2004). Ecology of metal hyperaccumulation. New Phytologist, 162, 563–567.

    Article  Google Scholar 

  • Boyd, R. S. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant and Soil, 293, 153–176.

    Article  CAS  Google Scholar 

  • Boyd, R. S. (2009). High-nickel insects and nickel hyperaccumulator plants: a review. Insect Science, 16, 19–31.

    Article  CAS  Google Scholar 

  • Boyd, R. S. (2010). Heavy metal pollutants and chemical ecology: exploring new frontiers. Journal of Chemical Ecology, 36, 46–58.

    Article  CAS  Google Scholar 

  • Boyd, R. S. (2012). Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Science, 195, 88–95.

    Article  CAS  Google Scholar 

  • Boyd, R. S. (2014). Ecology and evolution of metal-hyperaccumulator plants. In N. Rajakaruna, R. S. Boyd, & T. Harris (Eds.), Plant ecology and evolution in harsh environments (pp. 227–241). Hauppauge: Nova.

  • Boyd, R. S., & Jaffré, T. (2001). Phytoenrichment of soil Ni concentration by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. South African Journal of Science, 97, 535–538.

    CAS  Google Scholar 

  • Boyd, R. S., Kruckeberg, A. R., & Rajakaruna, N. (2009). Biology of ultramafic rocks and soils: research goals for the future. Northeastern Naturalist, 16, 422–440.

    Article  Google Scholar 

  • Boyd, R. S., & Martens, S. N. (1998). The significance of metal hyperaccumulation for biotic interactions. Chemoecology, 8, 1–7.

    Article  CAS  Google Scholar 

  • Boyd, R. S., & Rajakaruna, N. (2013). Heavy metal tolerance. In D. Gibson (Ed.), Oxford bibliographies in ecology (pp. 1–24). New York: Oxford University Press.

    Google Scholar 

  • Boyd, R. S., & Wall, M. A. (2001). Responses of generalist predators fed high-Ni Melanotrichus boydi (Heteroptera: Miridae): elemental defense against the third trophic level. American Midland Naturalist, 146, 186–198.

    Article  Google Scholar 

  • Boyd, R. S., Wall, M. A., & Jaffré, T. (2006). Nickel levels in arthropods associated with Ni hyperaccumulator plants from an ultramafic site in New Caledonia. Insect Science, 13, 271–277.

    Article  CAS  Google Scholar 

  • Brandl, H. (2001). Heterotrophic leaching. In G. M. Gadd (Ed.), Fungi in bioremediation (pp. 383–423). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Brandl, H., & Faramarzi, M. A. (2006). Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology, 4, 93–97.

    Article  CAS  Google Scholar 

  • Brekken, A., & Steinnes, E. (2004). Seasonal concentration of cadmium and zinc in native pasture plants: consequences for grazing animals. Science of the Total Environment, 326, 181–195.

    Article  CAS  Google Scholar 

  • Brussaard, L. (1997). Biodiversity and ecosystem function in soil. Ambio, 26, 563–570.

    Google Scholar 

  • Buchwalter, D. B., Cain, D. J., Clements, W. H., & Luoma, S. N. (2007). Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects. Environmental Science and Technology, 41, 4821–4828.

    Article  CAS  Google Scholar 

  • Cai, S., Yue, L., Hu, Z. N., Zhong, X. Z., Ye, Z. L., Xu, H. D., Liu, Y. R., Ji, R. D., Zhang, W. H., & Zhang, F. Y. (1990). Cadmium exposure and health effects among residents in an irrigation area with ore dressing waste water. Science of the Total Environment, 90, 67–73.

    Article  CAS  Google Scholar 

  • Cai, Q., Long, M. L., Zhu, M., Zhou, Q. Z., Zhang, L., & Liu, J. (2009). Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China. Environmental Pollution, 157, 3078–3082.

    Article  CAS  Google Scholar 

  • Cao, H., Chen, J., Zhang, J., Zhang, H., Qiao, L., & Men, Y. (2010). Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. Journal of Environmental Sciences, 22, 1792–1799.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444.

    Article  CAS  Google Scholar 

  • Chaffai, R., & Koyama, H. (2011). Heavy metal tolerance in Arabidopsis thaliana. Advances in Botanical Research, 60, 1–49.

    Article  CAS  Google Scholar 

  • Chander, K., Brookes, P. C., & Harding, S. A. (1995). Microbial biomass dynamics following addition of metal-enriched sewage sludges to a sandy loam. Soil Biology and Biochemistry, 27, 1049–1421.

    Article  Google Scholar 

  • Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429–1443.

    Article  CAS  Google Scholar 

  • Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69, 513–524.

    Article  CAS  Google Scholar 

  • Cheruiyot, D. J., Boyd, R. S., Coudron, T. A., & Cobine, P. (2013). Biotransfer, bioaccumulation and effects of herbivore dietary Co, Cu, Ni and Zn on growth and development of the insect predator Podisus maculiventris (Say) (Hemiptera: Pentatomidae). Journal of Chemical Ecology, 39, 764–772.

    Article  CAS  Google Scholar 

  • Cole, M. M. (1973). Geobotanical and biogeochemical investigations in the sclerophyllous woodland and shrub associations of the Eastern Goldfields area of Western Australia, with particular reference to the role of Hybanthus floribundus (Lindl.) F. Muell. as a nickel indicator and accumulator plant. Journal of Applied Ecology, 10, 269–320.

    Article  Google Scholar 

  • Comber, S. D. W., & Gunn, A. M. (1996). Heavy metals entering sewage-treatment works from domestic sources. Water and Environment Journal, 10, 137–142.

    Article  CAS  Google Scholar 

  • Cui, J., Zhu, Y. G., Zhai, R. H., Chen, D. Y., Huang, Y. Z., Qui, Y., & Liang, J. Z. (2004). Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International, 30, 785–791.

    Article  CAS  Google Scholar 

  • Dai, J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F., Nahmani, J., & Lavelle, P. (2004). Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biology and Biochemistry, 36, 91–98.

    Article  CAS  Google Scholar 

  • Damek-Poprawa, M., & Sawicka-Kapusta, K. (2003). Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology, 186, 1–10.

    Article  CAS  Google Scholar 

  • Devkota, B., & Schmidt, G. H. (2000). Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agriculture Ecosystems and Environment, 78, 85–91.

    Article  CAS  Google Scholar 

  • Drouhot, S., Raoul, F., Crini, N., Tougard, C., Prudent, A. S., Druart, C., Rieffel, D., Lambert, J. C., Tête, N., Giraudoux, P., & Scheifler, R. (2014). Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France. Science of the Total Environment, 470–471, 1012–1022.

    Article  CAS  Google Scholar 

  • Eckel, H., Roth, U., Döhler, H., & Schultheis, U. (2008). Assessment and reduction of heavy metal input into agro-ecosystems. In P. Schlegel, S. Durosoy, & A. W. Jongbloed (Eds.), Trace elements in animal production systems (pp. 33–43). The Netherlands: Wageningen Academic.

    Google Scholar 

  • Efremova, M., & Izosimova, A. (2012). Contamination of agricultural soils with heavy metals. In C. Jakobsson (Ed.), Sustainable agriculture (pp. 250–252). Uppsala: Baltic University Press.

    Google Scholar 

  • Ellis, R. J., Morgan, P., Weightman, A. J., & Fry, J. C. (2003). Cultivation-dependant and –independent approaches for determining bacterial diversity in heavy-metal contaminated soil. Applied and Environmental Microbiology, 69, 3223–3230.

    Article  CAS  Google Scholar 

  • Ensley, B. D. (2000). Rationale for use of phytoremediation. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment (pp. 3–13). New York: Wiley.

    Google Scholar 

  • Epstein, E., & Bloom, A. J. (2004). Mineral nutrition of plants: principles and perspectives (2nd ed.). Sunderland: Sinauer.

    Google Scholar 

  • Ernst, W. H. O. (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80, 251–274.

    Google Scholar 

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.

    Article  CAS  Google Scholar 

  • Freeman, J. L., Quinn, C. F., Marcus, M. A., Fakra, S., & Pilon-Smits, E. A. H. (2006). Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Current Biology, 16, 2181–2192.

    Article  CAS  Google Scholar 

  • Friesl-Hanl, W., Platzer, K., Horak, O., & Gerzabek, M. H. (2009). Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years. Environmental Geochemistry and Health, 31, 581–594.

    Article  CAS  Google Scholar 

  • Fritsch, C., Coeurdassier, M., Giraudoux, P., Raoul, F., Douay, F., Rieffel, D., de Vaufleury, A., & Scheifler, R. (2011). Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape. PLoS ONE, 6(5), e20682. doi:10.1371/journal.pone.0020682.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46, 834–840.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156, 609–643.

    Article  CAS  Google Scholar 

  • Gall, J. E., & Rajakaruna, N. (2013). The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In L. Minglin (Ed.), Brassicaceae: characterization, functional genomics and health benefits (pp. 121–148). Hauppauge: Nova.

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, 3, 1–18.

    Article  Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41, 2031–2037.

    Article  CAS  Google Scholar 

  • Gimeno-García, E., Andreu, V., & Boluda, R. (1996). Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution, 92, 19–25.

    Article  Google Scholar 

  • Gollenberg, A. L., Hediger, M. L., Lee, P. A., Himes, J. H., & Louis, G. M. B. (2010). Association between lead and cadmium and reproductive hormones in peripubertal U.S. girls. Environmental Health Perspectives, 118, 1782–1787.

    CAS  Google Scholar 

  • Goodyear, K. L., & McNeill, S. (1999). Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Science of the Total Environment, 229, 1–19.

    Article  CAS  Google Scholar 

  • Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7, 311–319.

    Article  CAS  Google Scholar 

  • Gray, J. S. (2002). Biomagnification in marine systems: the perspective of an ecologist. Marine Pollution Bulletin, 45, 46–52.

    Article  CAS  Google Scholar 

  • Green, I. D., Diaz, A., & Tibbett, M. (2010). Factors affecting the concentration in seven-spotted ladybirds (Coccinella septempunctata L.) of Cd and Zn transferred through the food chain. Environmental Pollution, 158, 135–141.

    Article  CAS  Google Scholar 

  • Grzes, I. M. (2010). Ants and heavy metal pollution—a review. European Journal of Soil Biology, 46, 350–355.

    Article  CAS  Google Scholar 

  • Gundacker, C., Frölich, S., Graf-Rohrmeister, K., Eibenberger, B., Jessenig, V., Gicic, D., Prinz, S., Witmann, K. J., Zielser, H., Vallant, B., Pollak, A., & Husslein, P. (2010). Prenatal lead and mercury exposure in Austria. Science of the Total Environment, 408, 5744–5749.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Science of the Total Environment, 178, 11–20.

    Article  CAS  Google Scholar 

  • Haferburg, G., Kothe, E. (2007). Microbes and metals: interactions in the environment. Journal of Basic Microbiology, 453–467.

  • Haferburg, G., & Kothe, E. (2010). Metallomics: lessons for metalliferous soil remediation. Applied Microbiology and Biotechnology, 87, 1271–1280.

    Article  CAS  Google Scholar 

  • Hamers, T., van den Berg, J. H. J., van Gestel, C. A. M., van Schooten, F. J., & Murk, A. J. (2006). Risk assessment of metals and organic pollutants for herbivorous and carnivorous small mammal food chains in a polluted floodplain (Biesbosch, The Netherlands). Environmental Pollution, 144, 581–595.

    Article  CAS  Google Scholar 

  • Harrison, S. P., & Rajakaruna, N. (2011). What have we learned from serpentine about evolution, ecology, and other sciences? In S. P. Harrison & N. Rajakaruna (Eds.), Serpentine: evolution and ecology of a model system (pp. 417–427). Berkeley: University of California Press.

    Google Scholar 

  • Heikens, A., Peijnenburg, W. J. G. M., & Hendriks, A. J. (2001). Bioaccumulation of heavy metals in terrestrial invertebrates. Environmental Pollution, 113, 385–393.

    Article  CAS  Google Scholar 

  • Hladun, K. R., Parker, D. R., & Trumble, J. T. (2011). Selenium accumulation in the floral tissues of two Brassicaceae species and its impact on floral traits and plant performance. Environmental and Experimental Botany, 74, 90–97.

    Article  CAS  Google Scholar 

  • Hobbelen, P. H. F., Koolhaas, J. E., & Van Gestel, C. A. M. (2006). Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environmental Pollution, 144, 639–646.

    Article  CAS  Google Scholar 

  • Hol, W. H., de Boer, W., Termorshuizen, A. J., Meyer, K. M., Schneider, J. H. M., van Dam, N. M., van Veen, J. A., & van der Putten, W. H. (2010). Reduction of rare soil microbes modifies plant-herbivore interactions. Ecology Letters, 13, 292–301.

    Article  Google Scholar 

  • Hossain, M.A., Piyatida, P., Teixeria da Silva, J.A., Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany 2012, doi.org/10.1155/2012/872875.

  • Hough, R. L., Breward, N., Young, S. D., Crout, N. M., Tye, A. M., Moir, A. M., & Thornton, I. (2004). Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environmental Health Perspectives, 112, 215–221.

    Article  CAS  Google Scholar 

  • Hunter, B. A., & Johnson, M. S. (1982). Food chain relationships of copper and cadmium in contaminated grassland ecosystems. Oikos, 38, 108–117.

    Article  CAS  Google Scholar 

  • Hunter, B. A., Johnson, M. S., & Thompson, D. J. (1987). Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. Journal of Applied Ecology, 24, 601–614.

    Article  CAS  Google Scholar 

  • Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W., & Sessitsch, A. (2004). Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70, 2667–2677.

    Article  CAS  Google Scholar 

  • Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. Botanical Review, 75, 339–364.

    Article  Google Scholar 

  • Janssens, T. K. S., Roelofs, D., & van Straalen, N. M. (2009). Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Science, 16, 3–18.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Javied, S., Mehmood, T., Chaudhry, M. M., Tufail, M., & Irfan, N. (2009). Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, 91, 94–99.

    Article  CAS  Google Scholar 

  • Jiao, W., Chen, W., Chang, A. C., & Page, A. L. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environmental Pollution, 168, 44–53.

    Article  CAS  Google Scholar 

  • Jin, T., Nordberg, M., Frech, W., Dumont, X., Bernard, A., Ye, T. T., Kong, Q., Wang, Z., Li, P., Lundstrom, N. G., Li, Y., & Nordberg, G. F. (2002). Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). BioMetals, 15, 397–410.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.

    Google Scholar 

  • Khan, A. T., Thompson, S. J., & Mielke, H. W. (1995). Lead and mercury levels in raccoons from Macon County, Alabama. Bulletin of Environmental Contamination and Toxicology, 54, 812–816.

    CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.

    Article  CAS  Google Scholar 

  • Kelessidis, A., & Stasinakis, A. S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 32, 1186–1195.

    Article  CAS  Google Scholar 

  • Kothe, E., & Büchel, G. (2014). Umbrella: using microbes for the regulation of heavy metal mobility at ecosystem and landscape scale. Environmental Science and Pollution Research, 21, 6761–6764.

    Article  Google Scholar 

  • Kramarova, M., Massanyi, P., Slamecka, J., Tataruch, F., Jancova, A., Gasparik, J., Fabis, M., Kovacik, J., Toman, R., Galova, J., & Jurcik, R. (2005). Distribution of cadmium and lead in liver and kidney, of some wild animals in Slovakia. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 40, 593–600.

    Article  CAS  Google Scholar 

  • Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.

    Article  CAS  Google Scholar 

  • Komarnicki, G. J. K. (2000). Tissue, sex and age specific accumulation of heavy metals (Zn, Cu, Pb, Cd) by populations of the mole (Talpa europaea L.) in a central urban area. Chemosphere, 41, 1593–1602.

    Article  CAS  Google Scholar 

  • Kools, S. A. E., Boivin, M. Y., Van Der Wurff, A. W. G., Berg, M. P., van Gestel, C. A. M., & Van Straalen, N. M. (2009). Assessment of structure and function in metal polluted grasslands using terrestrial model ecosystems. Ecotoxicology and Environmental Safety, 72, 51–59.

    Article  CAS  Google Scholar 

  • Kupper, H., & Leitenmaier, B. (2011). Cadmium-accumulating plants. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), Cadmium: from toxicity to essentiality (pp. 373–393). New York: Springer.

    Google Scholar 

  • Langdon, C. J., Piearce, T. G., Meharg, A. A., & Semple, K. T. (2003). Interactions between earthworms and arsenic in the soil environment: a review. Environmental Pollution, 124, 361–373.

    Article  CAS  Google Scholar 

  • Lee, I.-S., Kim, O. K., Chang, Y.-Y., Bae, B., Kim, H. H., & Baek, K. H. (2002). Heavy metal concentration and enzyme activities in soil from a contaminated Korean shooting range. Journal of Bioscience and Bioengineering, 94, 406–411.

    Article  CAS  Google Scholar 

  • Lopes, P. A., Viegas-Crespo, A. M., Nunes, A. C., Pinheiro, T., Marques, C., Santos, M. C., & Mathias, M. L. (2002). Influence of age, sex, and sexual activity on trace element levels and antioxidant enzyme activities in field mice (Apodemus sylvaticus and Mus pretus). Biological Trace Element Research, 85, 227–239.

    Article  CAS  Google Scholar 

  • Lord, C. G., Gaines, K. F., Boring, C. S., Brisbin, I. L., Gochfeld, M., & Burger, J. (2002). Raccoon (Procyon lotor) as a bioindicator of mercury contamination at the U.S. Department of Energy’s Savannah River site. Archives of Environmental Contamination and Toxicology, 43, 356–363.

    Article  CAS  Google Scholar 

  • Lugon-Moulin, N., Ryan, L., Donini, P., & Rossi, L. (2006). Cadmium content of phosphate fertilizers used for tobacco production. Agronomy for Sustainable Development, 26, 151–155.

    Article  CAS  Google Scholar 

  • Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y. G. (2009). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90, 2524–2530.

    Article  CAS  Google Scholar 

  • Ma, W., Denneman, W., & Faber, J. (1991). Hazardous exposure of ground-living small mammals to cadmium, and lead in contaminated terrestrial ecosystems. Archives of Environmental Contamination and Toxicology, 20, 266–270.

    Article  CAS  Google Scholar 

  • Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68, 1–13.

    Article  CAS  Google Scholar 

  • Mahajan, V. E., Yadav, R. R., Dakshinkar, N. P., Dhoot, V. M., Bhojane, G. R., Naik, M. K., Shrivastava, P., Naoghare, P. K., & Krishnamurthi, K. (2012). Influence of mercury from fly ash on cattle reared nearby thermal power plant. Environmental Monitoring and Assessment, 184, 7365–7372.

    Article  CAS  Google Scholar 

  • Mann, R. M., Vijver, M. G., & Peijnenburg, W. J. G. M. (2011). Metals and metalloids in terrestrial systems: Bioaccumulation, biomagnification and subsequent adverse effects. In F. Sánchez-Bayo, P. J. van den Brink, & R. M. Mann (Eds.), Ecological impacts of toxic chemicals (pp. 43–62). Sharjah: Bentham.

    Google Scholar 

  • Marschner, P. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). London: Academic.

    Google Scholar 

  • Martens, S. N., & Boyd, R. S. (1994). The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia, 98, 379–384.

    Article  Google Scholar 

  • Martens, S. N., & Boyd, R. S. (2002). The defensive role of Ni hyperaccumulation by plants: a field experiment. American Journal of Botany, 89, 998–1003.

    Article  Google Scholar 

  • Mathews, S., Ma, L. Q., Rathinasabapathi, C., & Stamps, R. H. (2009). Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L. Environmental and Experimental Botany, 65, 282–286.

    Article  CAS  Google Scholar 

  • Matsubara, M., & Itoh, T. (2006). The present situation and future issues on beneficial use of sewage sludge. Saisei to riyo (Association for Utilization of Sewage Sludge), 29, 19–27.

    Google Scholar 

  • McClellan, K., & Halden, R. U. (2010). Pharmaceuticals and personal care products in archived US biosolids from the 2001 EPA national sewage sludge survey. Water Research, 44, 658–668.

    Article  CAS  Google Scholar 

  • Meier, S., Borie, F., Bolan, N., & Cornejo, P. (2012). Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology, 42, 741–775.

    Article  CAS  Google Scholar 

  • Meindl, G. A., & Ashman, T.-L. (2013). The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees. Environmental Pollution, 177, 78–81.

    Article  CAS  Google Scholar 

  • Meindl, G. A., Bain, D. J., & Ashman, T.-L. (2014). Nickel accumulation in leaves, floral organs and rewards varies by serpentine soil affinity. AoB Plants. doi:10.1093/aobpla/plu036.

    Google Scholar 

  • Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.

    Article  CAS  Google Scholar 

  • Mertens, J., Luyssaert, S., Verbeeren, S., Vervaeke, P., & Lust, N. (2001). Metal concentrations in small mammals and willow leaves on disposal facilities for dredged material. Environmental Pollution, 115, 17–22.

    Article  CAS  Google Scholar 

  • Mesjasz-Przybylowicz, J., & Przybylowicz, W. J. (2001). Phytophagous insects associated with the Ni-hyperaccumulating plant Berkheya coddii (Asteraceae) in Mpumalanga, South Africa. South African Journal of Science, 97, 596–598.

    CAS  Google Scholar 

  • Migula, P., Przybylowicz, W. J., Nakonieczny, M., Augustyniak, M., Tarnawska, M., & Mesjasz-Przybylowicz, J. (2011). Micro-PIXE studies of Ni-elimination strategies in representatives of two families of beetles feeding on Ni-hyperaccumulating plant Berkheya coddii. X-Ray Spectrometry, 40, 194–197.

    Article  CAS  Google Scholar 

  • Miranda, M., Benedito, J. L., Blanco-Penedo, I., Lopez-Lamas, C., Merino, A., & Lopez-Alonso, M. (2009). Metal accumulation in cattle raised in a serpentine-soil area: relationship between metal concentrations in soil, forage and animal tissues. Journal of Trace Elements in Medicine and Biology, 23, 231–238.

    Article  CAS  Google Scholar 

  • Miranda, M., López Alonso, M., Castillo, C., Hernández, J., & Benedito, J. L. (2005). Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environment International, 31, 543–548.

    Article  CAS  Google Scholar 

  • Mogren, C. L., & Trumble, J. T. (2010). The impacts of metals and metalloids on insect behavior. Entomologia Experimentalis et Applicata, 135, 1–17.

    Article  CAS  Google Scholar 

  • Moriarty, M. M., Koch, I., & Reimer, K. J. (2012). Arsenic speciation, distribution and bioaccessibility in shrews and their food. Archives of Environmental Contamination and Toxicology, 62, 529–538.

    Article  CAS  Google Scholar 

  • Mortvedt, J. J. (1996). Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Research, 43, 55–61.

    Article  Google Scholar 

  • Muchuweti, M., Birkett, J. W., Chinyanga, E., Zvauya, R., Scrimshaw, M. D., & Lester, J. N. (2006). Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health. Agriculture, Ecosystems & Environment, 112, 41–48.

    Article  CAS  Google Scholar 

  • Nica, D. V., Bura, M., Gergen, I., Harmanescu, M., & Bordean, D. (2012). Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chemistry Central Journal, 6, 1–15.

    Article  CAS  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311, 205–219.

    Article  CAS  Google Scholar 

  • Neilson, S., & Rajakaruna, N. (2012). Roles of rhizospheric processes and plant physiology in phytoremediation of contaminated sites using oilseed Brassicas. In N. A. Anjum, I. Ahmad, M. E. Pereira, A. C. Duarte, S. Umar, & N. A. Khan (Eds.), The plant family brassicaceae: contribution towards phytoremediation. Environmental pollution book series (Vol. 21, pp. 313–330). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Neilson, S., & Rajakaruna, N. (2014). Phytoremediation of agricultural soils: using plants to clean metal-contaminated arable lands. In A. A. Ansari, S. S. Gill, & G. R. Lanza (Eds.), Phytoremediation: management of environmental contaminants (pp. 159–168). Dordrecht: Springer.

    Google Scholar 

  • Nordberg, G. F., Jin, T., Kong, Q., Ye, T., Cai, S., & Wang, Z. (1997). Biological monitoring of cadmium exposure and renal effects in a population group residing in a polluted area in China. Science of the Total Environment, 199, 111–114.

    Article  CAS  Google Scholar 

  • Noret, N., Josens, G., Escarre, J., Lefevre, C., Panichelli, S., & Meerts, P. (2007). Development of Issoria lathonia (Lepidoptera: Nymphalidae) on zinc-accumulating and nonaccumulating Viola species (Violaceae). Environmental Toxicology and Chemistry, 26, 565–571.

    Article  CAS  Google Scholar 

  • Notten, M. J. M., Oosthoek, A. J. P., Rozema, J., & Aerts, R. (2006). Heavy metal pollution affects consumption of landsnail Cepaea nemoralis fed on naturally polluted Urtica dioica leaves. Ecotoxicology, 15, 295–304.

    Article  CAS  Google Scholar 

  • Notten, M. J. M., Walraven, N., Beets, C. J., Vroon, P., Rozema, J., & Aerts, R. (2008). Investigating the origin of Pb pollution in a terrestrial soil-plant-snail food chain by means of Pb isotope ratios. Applied Geochemistry, 23, 1581–1593.

    Article  CAS  Google Scholar 

  • Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390, 53–57.

    Article  CAS  Google Scholar 

  • O’Dell, R. E., & Rajakaruna, N. (2011). Intraspecific variation, adaptation, and evolution. In S. H. Harrison & N. Rajakaruna (Eds.), Serpentine: the evolution and ecology of a model system (pp. 97–137). Berkeley: University of California Press.

    Google Scholar 

  • Oken, E., Wright, R. O., Kleinman, K. P., Bellinger, D., Amarasiriwardena, C. J., Hu, H., Rich-Edwards, J. W., & Gillman, M. W. (2005). Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Environmental Health Perspectives, 113, 1376–1380.

    Article  CAS  Google Scholar 

  • Otero, N., Vitoria, L., Soler, A., & Canals, A. (2005). Fertiliser characterisation: major, trace and rare earth elements. Applied Geochemistry, 20, 1473–1488.

    Article  CAS  Google Scholar 

  • Oves, M., Khan, M. S., Zaidi, A., & Ahmad, E. (2012). Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. In A. Zaidi, P. A. Wani, & M. S. Khan (Eds.), Toxicity of heavy metals to legumes and bioremediation (pp. 1–27). New York: Springer.

    Chapter  Google Scholar 

  • Pan, J., Plant, J. A., Voulvoulis, N., Oates, C. J., & Ihlenfeld, C. (2010). Cadmium levels in Europe: implications for human health. Environmental Geochemistry and Health, 32, 1–12.

    Article  CAS  Google Scholar 

  • Pankakoski, E., Koivisto, I., Hyvarinen, H., & Terhivuo, J. (1994). Shrews as indicators of heavy metal pollution. Carnegie Museum of Natural History Special Publication, 18, 137–149.

    Google Scholar 

  • Patrashkov, S. A., Petukhov, V. L., Korotkevich, O. S., & Petukhov, I. V. (2003). Content of heavy metals in the hair. Journal de Physique IV France, 107, 1025–1027.

    Article  CAS  Google Scholar 

  • Pennanen, T., Perkiömäki, J., Kiikilä, O., Vanhala, P., Neuhoven, S., & Fritze, H. (1998). Prolonged, simulated acid rain and heavy metal deposition: separated and combined effects on forest soil microbial community structure. FEMS Microbiology Ecology, 27, 291–300.

    Article  CAS  Google Scholar 

  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41, 1665–1677.

    Article  CAS  Google Scholar 

  • Pérez-de-Mora, A., Burgos, P., Madejón, E., Cabrera, F., Jaeckel, P., & Schloter, M. (2006). Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biology & Biochemistry, 38, 327–341.

    Article  CAS  Google Scholar 

  • Peterson, L. R., Trivett, V., Baker, A. J. M., Aguiar, C., & Pollard, A. J. (2003). Spread of metals through an invertebrate food chain as influenced by a plant that hyperaccumulates nickel. Chemoecology, 13, 103–108.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Phillips, C. J. C., & Tudoreanu, L. (2011). A model of cadmium in the liver and kidney of sheep derived from soil and dietary characteristics. Journal of the Science of Food and Agriculture, 91, 370–376.

    Article  CAS  Google Scholar 

  • Pokorny, B., & Ribaric-Lasnik, C. (2002). Seasonal variability of mercury and heavy metals in roe deer. Environmental Pollution, 117, 35–46.

    Article  CAS  Google Scholar 

  • Pollard, A. J., Reeves, R. D., & Baker, A. J. M. (2014). Facultative hyperaccumulation of heavy metals and metalloids. Plant Science, 217, 8–17.

    Article  CAS  Google Scholar 

  • Pragst, F., & Balikova, M. (2006). State of the art in hair analysis for detection of drug and alcohol abuse. Clinica Chimica Acta, 370, 17–49.

    Article  CAS  Google Scholar 

  • Prosi, F., Storch, V., & Janssen, H. H. (1983). Small cells in the midgut glands of terrestrial Isopoda: sites of heavy metal accumulation. Zoomorphology, 102, 53–64.

    Article  Google Scholar 

  • Pruvot, C., Douay, F., Hervé, F., & Waterlot, C. (2006). Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. Journal of Soils and Sediments, 6, 215–220.

    Article  CAS  Google Scholar 

  • Przybylowicz, W. J., Mesjasz-Przybylowicz, J., Migula, P., Glowacka, E., Nakonieczny, M., & Augustyniak, M. (2003). Functional analysis of metals distribution in organs of the beetle Chrysolina pardalina exposed to excess of nickel by Micro-PIXE. Nuclear Instruments and Methods in Physics Research B, 210, 343–348.

    Article  CAS  Google Scholar 

  • Quinn, C. F., Prins, C. N., Freeman, J. L., Gross, A. M., Hantzis, L. J., Reynolds, R. J. B., Yang, S., Covey, P. A., Bañuelos, G. S., Pickering, I. J., Fakra, S. C., Marcus, M. A., Arathi, H. S., & Pilon-Smits, E. A. H. (2011). Selenium accumulation in flowers and its effects on pollination. New Phytologist, 192, 727–737.

    Article  CAS  Google Scholar 

  • Rajakaruna, N., & Boyd, R. S. (2008). Edaphic Factor. In S. E. Jorgensen & B. D. Fath (Eds.), General ecology: encyclopedia of ecology (2nd ed., pp. 1201–1207). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Rajakaruna, N., Boyd, R. S., & Harris, T. B. (Eds.). (2014). Plant ecology and evolution in harsh environments. Hauppauge: Nova.

  • Rajakaruna, N., Tompkins, K. M., & Pavicevic, P. G. (2006). Phytoremediation: an affordable green technology for the clean-up of metal contaminated sites in Sri Lanka. Ceylon Journal of Science, 35, 25–39.

    Google Scholar 

  • Rashed, M., & Soltan, M. (2005). Animal hair as biological indicator for heavy metal pollution in urban and rural areas. Environmental Monitoring and Assessment, 110, 41–53.

    Article  CAS  Google Scholar 

  • Rathinasabapathi, B., Rangasamy, M., Froeba, J., Cherry, R. H., McAuslane, H. J., Capinera, J. L., Srivastava, M., & Ma, L. Q. (2007). Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory. New Phytologist, 175, 363–369.

    Article  CAS  Google Scholar 

  • Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agriculture, Ecosystems & Environment, 109, 310–322.

    Article  CAS  Google Scholar 

  • Reeves, R. D., Brooks, R. R., & Macfarlane, R. M. (1981). Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). American Journal of Botany, 68, 708–712.

    Article  CAS  Google Scholar 

  • Reglero, M. M., Monsalve-González, L., Taggart, M. A., & Mateo, R. (2008). Transfer of metals to plants and red deer in an old lead mining area in Spain. Science of the Total Environment, 406, 287–297.

    Article  CAS  Google Scholar 

  • Reglero, M. M., Taggart, M. A., Monsalve-González, L., & Mateo, R. (2009). Heavy metal exposure in large game from a lead mining area: effects on oxidative stress and fatty acid composition in liver. Environmental Pollution, 157, 1388–1395.

    Article  CAS  Google Scholar 

  • Roberts, R. D., & Johnson, M. S. (1978). Dispersal of heavy metals from abandoned mine workings and their transference through terrestrial food chains. Environmental Pollution, 16, 293–310.

    Article  CAS  Google Scholar 

  • Roggeman, S., van den Brink, N., Van Praet, N., Blust, R., & Bervoets, L. (2013). Metal exposure and accumulation patterns in free-range cows (Bos taurus) in a contaminated natural area: Influence of spatial and social behavior. Environmental Pollution, 172, 186–199.

    Article  CAS  Google Scholar 

  • Rogival, D., Scheirs, J., & Blust, R. (2007). Transfer and accumulation of metals in a soil-diet-wood mouse food chain along a metal pollution gradient. Environmental Pollution, 145, 516–528.

    Article  CAS  Google Scholar 

  • Rosen, G. D., & Roberts, P. A. (1996). Comprehensive survey of the response of growing pigs to supplementary copper in feed. London: Field Investigations and Nutrition Service Ltd.

    Google Scholar 

  • Ryan, J. A., Pahren, H. R., & Lucas, J. B. (1982). Controlling cadmium in the human food chain: a review and rationale based on health effects. Environmental Research, 28, 251–302.

    Article  CAS  Google Scholar 

  • Sahoo, P. K., & Kim, K. (2013). A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosciences Journal, 17, 107–122.

    Article  CAS  Google Scholar 

  • Sample, B. E., Schlekat, C., Spurgeon, D. J., Menzie, C., Rauscher, J., & Adams, B. (2014). Recommendations to improve wildlife exposure estimation for development of soil screening and cleanup values. Integrated Environmental Assessment and Management, 10, 372–387.

    Article  CAS  Google Scholar 

  • Sánchez, M. L. (Ed.). (2008). Causes and effects of heavy metal pollution. New York: Nova.

    Google Scholar 

  • Sánchez-Chardi, A., & Nadal, J. (2007). Bioaccumulation of metals and effects of landfill pollution in small mammals. Part I. The greater white-toothed shrew, Crocidura russula. Chemosphere, 68, 703–711.

    Article  CAS  Google Scholar 

  • Sánchez-Chardi, A., Penarroja-Matutano, C., Ribeiro, C. A. O., & Nadal, J. (2007a). Bioaccumulation of metals and effects of a landfill in small mammals. Part II. The wood mouse, Apodemus sylvaticus. Chemosphere, 70, 101–109.

    Article  CAS  Google Scholar 

  • Sánchez-Chardi, A., López-Fuster, M. J., & Nadal, J. (2007b). Bioaccumulation of lead, mercury, and cadmium in the greater white-toothed shrew, Crocidura russula, from the Ebro Delta (NE Spain): Sex- and age-dependent variation. Environmental Pollution, 145, 7–14.

    Article  CAS  Google Scholar 

  • Santhiya, D., & Ting, Y. P. (2005). Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology, 116, 171–184.

    Article  CAS  Google Scholar 

  • Scheirs, J., De Coen, A., Covaci, A., Beernaert, J., Kayawe, V. M., Caturla, M., De Wolf, H., Baert, P., Van Oostveldt, P., Verhagen, R., Blust, R., & De Coen, W. (2006a). Genotoxicity in wood mice (Apodemus sylvaticus) along a pollution gradient: exposure-, age-, and gender-related effects. Environmental Toxicology and Chemistry, 25, 2154–2162.

    Article  CAS  Google Scholar 

  • Scheirs, J., Vandevyvere, I., Wollaert, K., Blust, R., & Bruyn, L. D. (2006b). Plant-mediated effects of heavy metal pollution on host choice of a grass miner. Environmental Pollution, 143, 138–145.

    Article  CAS  Google Scholar 

  • Schmidt, T., & Schlegel, H. G. (1989). Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiology Ecology, 62, 315–328.

    Article  CAS  Google Scholar 

  • Scott, C. A., Faruqui, N. I., & Raschid-Sally, L. (2004). Wastewater use in irrigated agriculture: management challenges in developing countries. In C. A. Scott, N. I. Faruqui, & L. Raschid-Sally (Eds.), Wastewater use in irrigated agriculture (pp. 1–10). Oxfordshire: CABI.

    Google Scholar 

  • Silver, S., & Phung, L. T. (2009). Heavy metals, bacterial resistance. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 220–227). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Smith, G. J., & Rongstad, O. J. (1982). Small mammal heavy metal concentrations from mined and controlled sites. Environmental Pollution, 28, 121–134.

    Article  CAS  Google Scholar 

  • Smith, K. S., Balistrieri, L. S., & Todd, A. S. (2014). Using biotic ligand models to predict metal toxicity in mineralized systems. Applied Geochemistry. doi:10.1016/j.apgeochem.2014.07.005.

    Google Scholar 

  • Spears, J. W., Harvey, R. W., & Samsell, L. J. (1986). Effects of dietary nickel and protein on growth, nitrogen metabolism and tissue concentrations of nickel, iron, zinc, manganese and copper in calves. Journal of Nutrition, 116, 1873–82.

    CAS  Google Scholar 

  • Stankovic, S., Kalaba, P., & Stankovic, A. R. (2014). Biota as toxic metal indicators. Environmental Chemistry Letters, 12, 63–84.

    Article  CAS  Google Scholar 

  • Strauss, S. Y., & Boyd, R. S. (2011). Herbivory and other cross-kingdom interactions on harsh soils. In S. H. Harrison & N. Rajakaruna (Eds.), Serpentine: the evolution and ecology of a model system (pp. 181–199). Berkeley: University of California Press.

    Google Scholar 

  • Street, R. A. (2012). Heavy metals in medicinal plant products: an African perspective. South African Journal of Botany, 82, 67–74.

    Article  CAS  Google Scholar 

  • Sun, H., Dang, S., Xia, Q., Tang, W., & Zhang, G. (2011). The effect of dietary nickel on the immune responses of Spodoptera litura Fabricius larvae. Journal of Insect Physiology, 57, 954–961.

    Article  CAS  Google Scholar 

  • Swarup, D., & Dwivedi, S. K. (2002). Environmental pollution and effects of lead and fluoride on animal health. New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  • Tang, Y.-T., Deng, T.-H.-B., Wu, Q.-H., Wang, S.-Z., Qiu, R.-L., Wei, Z.-B., Guo, X.-F., Wu, Q.-T., Lei, M., Chen, T.-B., Echevarria, G., Sterckeman, T., Simonnot, M. O., & Morel, J. L. (2012). Designing cropping systems for metal-contaminated sites: a review. Pedosphere, 22, 470–488.

    Article  CAS  Google Scholar 

  • Tête, N., Durfort, M., Rieffel, D., Scheifler, R., & Sánchez-Chardi, A. (2014). Histopathology related to cadmium and lead bioaccumulation in chronically exposed wood mice, Apodemus sylvaticus, around a former smelter. Science of the Total Environment, 481, 167–177.

    Article  CAS  Google Scholar 

  • Tsao, D.T. (Ed.). (2003). Phytoremediation, advances in biochemical engineering/ biotechnology (Vol 78). Berlin/Heidelberg: Springer.

  • Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustoš, P., Zupan, M., & Wenzel, W. W. (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution, 148, 107–114.

    Article  CAS  Google Scholar 

  • Utmazian, M. N. D. S., Wieshammer, G., Vega, R., & Wenzel, W. W. (2007). Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 148, 155–165.

    Article  CAS  Google Scholar 

  • van den Brink, N., Lammertsma, D., Dimmers, W., Boerwinkel, M. C., & van der Hout, A. (2010). Effects of soil properties on food web accumulation of heavy metals to the wood mouse (Apodemus sylvaticus). Environmental Pollution, 158, 245–251.

    Article  CAS  Google Scholar 

  • van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362, 319–334.

    Article  CAS  Google Scholar 

  • van der Fels-Klerx, I., Römkens, P., Franz, E., & van Raamsdonk, L. (2011). Modeling cadmium in the feed chain and cattle organs. Biotechnology, Agronomy, Society and Environment, 15, 53–59.

    Google Scholar 

  • Van Kauwenbergh, S.J. (2002). Cadmium content of phosphate rocks and fertilizers, International Fertilizer Industry Association (IFA) Technical Conference, Chennai, India, September 2002.

  • Vargha, B., Ötvös, E., & Tuba, Z. (2002). Investigations on ecological effects of heavy metal pollution in Hungary by moss-dwelling water bears (Tardigrada), as bioindicators. Annals of Agricultural and Environmental Medicine, 9, 141–146.

    CAS  Google Scholar 

  • Veltman, K., Huijbregts, M. A. J., Hamers, T., Wijnhoven, S., & Hendriks, A. J. (2007). Cadmium accumulation in herbivorous and carnivorous small mammals: meta-analysis of field data and validation of the bioaccumulation model optimal modeling for ecotoxicological applications. Environmental Toxicology and Chemistry, 26, 1488–1496.

    Article  CAS  Google Scholar 

  • Vermeulen, F., Van den Brink, N., D’Havé, H., Mubiana, V. K., Blust, R., Bervoets, L., & De Coen, W. (2009). Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice. Environmental Pollution, 157, 3098–3105.

    Article  CAS  Google Scholar 

  • Vithanage, M., Rajapaksha, A. U., Oze, C., Rajakaruna, N., & Dissanayake, C. B. (2014). Metal release from serpentine soils in Sri Lanka. Environmental and Monitoring Assessment, 186, 3415–3429.

    Article  CAS  Google Scholar 

  • Wall, M. A., & Boyd, R. S. (2002). Nickel accumulation in serpentine arthropods from the Red Hills, California. Pan-Pacific Entomologist, 78, 168–176.

    Google Scholar 

  • Wall, M. A., & Boyd, R. S. (2006). Melanotrichus boydi (Hemiptera: Miridae) is a specialist on the nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae). Southwestern Naturalist, 51, 481–489.

    Article  Google Scholar 

  • Watanabe, T., Zhang, Z. W., Qu, J. B., Gao, W. P., Jian, Z. K., Shimbo, S., Nakatsuka, H., Matsuda-Inoguchi, N., Higashikawa, K., & Ikeda, M. (2000). Background lead and cadmium exposure of adult women in Xian City and two farming villages in Shaanxi Province, China. Science of the Total Environment, 247, 1–13.

    Article  CAS  Google Scholar 

  • Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321, 385–408.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., & Jockwer, F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental Pollution, 104, 145–155.

    Article  CAS  Google Scholar 

  • Whiting, S. N., Reeves, R. D., Richards, D., Johnson, M. S., Cooke, J. A., Malaisee, F., Paton, A., Smith, J. A. C., Angle, J. S., Chaney, R. L., Ginocchio, R., Jaffré, T., Johns, R., McIntyre, T., Purvis, O. W., Salt, D. E., Schat, H., Zhao, F. J., & Baker, A. J. M. (2004). Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology, 12, 106–116.

    Article  Google Scholar 

  • Wijnhoven, S., Leuven, R. S. E. W., van der Velde, G., Jungheim, G., Koelemij, E. I., de Vries, F. T., Eijsackers, H. J. P., & Smits, A. J. M. (2007). Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species- and location-specific characteristics. Archives of Environmental Contamination and Toxicology, 52, 603–613.

    Article  CAS  Google Scholar 

  • Wilbur, S. B., Hansen, H., Pohl, H., Colman, J., & McClure, P. (2004). Using the ATSDR guidance manual for the assessment of joint toxic action of chemical mixtures. Environmental Toxicology and Pharmacology, 18, 223–230.

    Article  CAS  Google Scholar 

  • Wilkinson, J. M., Hill, J., & Phillips, C. J. (2003). The accumulation of potentially-toxic metals by grazing ruminants. The Proceedings of the Nutrition Society, 62, 267–77.

    Article  CAS  Google Scholar 

  • Williamson, S. D., & Balkwill, K. (2006). Factors determining levels of threat to serpentine endemics. South African Journal of Botany, 72, 619–626.

    Article  Google Scholar 

  • Witter, E., Gong, P., Bääth, E., & Marstorp, H. (2000). A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewer sludge applications. Environmental Toxicology and Chemistry, 19, 1983–1991.

    Article  CAS  Google Scholar 

  • Wittman, R., & Hu, H. (2002). Cadmium exposure and nephropathy in a 28-year old female metals worker. Environmental Health Perspectives, 10, 1261–1266.

    Article  Google Scholar 

  • Wright, R. O., Amarasiriwardena, C., Woolf, A. D., Jim, R., & Bellinger, D. C. (2006). Neurophysical correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology, 27, 210–216.

    Article  CAS  Google Scholar 

  • Wuana, R.A., Okieimen, F.E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 1–20.

  • Xiong, J., He, Z., Liu, D., Mahmood, Q., & Yang, X. (2008). The role of bacteria in the heavy metals removal and growth of Sedum alfredii in an aqueous medium. Chemosphere, 70, 489–904.

    Article  CAS  Google Scholar 

  • Yang, X. E., Jin, X. F., Feng, Y., & Islam, E. (2005). Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. Journal of Integrative Plant Biology, 47, 1025–1035.

    Article  CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407, 1551–1561.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishanta Rajakaruna.

Additional information

Jillian E. Gall holds a BA, College of the Atlantic.

Robert S. Boyd holds a PhD, Auburn University.

Nishanta Rajakaruna holds a PhD, College of the Atlantic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gall, J.E., Boyd, R.S. & Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187, 201 (2015). https://doi.org/10.1007/s10661-015-4436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4436-3

Keywords

Navigation