Skip to main content

Advertisement

Log in

Land cover mapping based on random forest classification of multitemporal spectral and thermal images

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Thematic mapping of complex landscapes, with various phenological patterns from satellite imagery, is a particularly challenging task. However, supplementary information, such as multitemporal data and/or land surface temperature (LST), has the potential to improve the land cover classification accuracy and efficiency. In this paper, in order to map land covers, we evaluated the potential of multitemporal Landsat 8’s spectral and thermal imageries using a random forest (RF) classifier. We used a grid search approach based on the out-of-bag (OOB) estimate of error to optimize the RF parameters. Four different scenarios were considered in this research: (1) RF classification of multitemporal spectral images, (2) RF classification of multitemporal LST images, (3) RF classification of all multitemporal LST and spectral images, and (4) RF classification of selected important or optimum features. The study area in this research was Naghadeh city and its surrounding region, located in West Azerbaijan Province, northwest of Iran. The overall accuracies of first, second, third, and fourth scenarios were equal to 86.48, 82.26, 90.63, and 91.82 %, respectively. The quantitative assessments of the results demonstrated that the most important or optimum features increase the class separability, while the spectral and thermal features produced a more moderate increase in the land cover mapping accuracy. In addition, the contribution of the multitemporal thermal information led to a considerable increase in the user and producer accuracies of classes with a rapid temporal change behavior, such as crops and vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AlaviPanah, S. K., Komaki, C. B., Goorabi, A., & Matinfar, H. R. (2007). Characterizing land cover types and surface condition of Yardang Region in Lut desert (Iran) based upon Landsat satellite images. World Applied Sciences Journal of Arid Environments, 2, 212–228.

    Google Scholar 

  • Barsi, J. A., Barker, J. L., Schott, J. R. (2003). An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. Paper presented at the IGARSS03, Toulouse, France.

  • Bellman, R. (2003). Dynamic programming (2nd ed.). Mineola: Dover Publications.

    Google Scholar 

  • Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97, 245–271.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

    Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey: Wadsworth.

    Google Scholar 

  • Breiman, L. (1999). Random forests—random features. Technical Report 567, Statistics Department, University of California, Berkeley, ftp://ftp.stat.berkeley.edu/pub/users/breiman.

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Congalton, R. C., & Green, K. (2008). Assessing the accuracy of remotely sensed data principles and practices (2nd ed.). New York: CRC press Taylor & Francis Group.

    Book  Google Scholar 

  • Cooper, D. I., & Asrar, G. (1989). Evaluating atmospheric correction models for retrieving surface temperatures from the AVHRR over a tall grass prairie. Remote Sensing of Environment, 27, 93–102.

    Article  Google Scholar 

  • Dator, J., Goossens, R., & Van Ranst, E. (1998). The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt). Geoderma, 87, 47–56.

    Article  Google Scholar 

  • Diaz-Uriarte, R., Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7.

  • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 40, 139–157.

    Article  Google Scholar 

  • Ehsani, A. H., & Quiel, F. (2010). Efficiency of Landsat ETM+ thermal band for land cover classification of the biosphere reserve “Eastern Carpathians” (Central Europe) using SMAP and ML algorithms. International Journal of Environmental Research and Public Health, 4, 741–750.

    Google Scholar 

  • Elhadi, A., Onisimo, M., John, O., & Elfatih, M. A. R. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35, 3440–3458.

    Article  Google Scholar 

  • French, A., Schmugge, T., Ritchie, J., Hsu, A., Jacob, F., & Ogawa, K. (2008). Detecting land cover change at the Jornada experimental range, New Mexico with ASTER emissivities. Remote Sensing of Environment, 112, 1730–1748.

    Article  Google Scholar 

  • Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31, 2225–2236.

    Article  Google Scholar 

  • Gillanders, S. N., Coops, N. C., Wulder, M. A., Gergel, S. E., & Nelson, T. (2008). Multitemporal remote sensing of landscape dynamics and pattern change: describing natural and anthropogenic trends. Progress in Physical Geography, 32, 503–528.

    Article  Google Scholar 

  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27, 294–300.

    Article  Google Scholar 

  • Ghimire, B., Rogan, J., & Miller, J. (2010). Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters, 1, 45–54.

    Article  Google Scholar 

  • Ghosh, A., Sharma, R., & Joshi, P. K. (2014). Random forest classification of urban landscape using Landsat archive and ancillary data: combining seasonal maps with decision level fusion. Applied Geography, 48, 31–41.

    Article  Google Scholar 

  • Guo, L., Chehata, N., Mallet, C., & Boukir, S. (2011). Relevance of airborne lidar and multispectral image data for urban scene classification using random forests. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 56–66.

    Article  Google Scholar 

  • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

    Google Scholar 

  • Ham, J., Chen, Y., Crawford, M. M., & Ghosh, J. (2005). Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 492–501.

    Article  Google Scholar 

  • Joshi, P. K., Roy, P. S., Singh, S., Agrawal, S., & Yadav, D. (2006). Vegetation cover mapping in India using multi-temporal IRS wide field sensor (WiFS) data. Remote Sensing of Environment, 103, 190–202.

    Article  Google Scholar 

  • Lamaro, A. A., Marinelarena, A., Torrusio, & Sala, S. (2013). Water surface temperature estimation from Landsat7 ETM+ thermal infrared data using the generalized single-channel method: case study of Embalse del RıoTercero (Cordoba, Argentina). Advances in Space Research, 51, 492–500.

    Article  Google Scholar 

  • Langley, S. K., Cheshire, H. M., & Humes, K. S. (2001). A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland. Journal of Arid Environments, 49, 401–411.

    Article  Google Scholar 

  • Lin, X., Sun, L., Li, Y., Guo, Z., Li, Y., Zhong, K., Wang, Q., Lu, X., Yang, Y., & Xu, G. (2010). A random forest of combined features in the classification of cut tobacco based on gas chromatography fingerprinting. Talanta, 82, 1571–1575.

    Article  CAS  Google Scholar 

  • Lippitt, C. D., Rogan, J., Li, Z., Eastman, J. R., & Jones, T. G. (2008). Mapping selective logging in mixed deciduous forest: a comparison of machine learning algorithms. Photogrammetric Engineering and Remote Sensing, 74, 1201–1211.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25, 2365–2401.

    Article  Google Scholar 

  • Nitze, I., Brian Barrett, B., & Cawkwell, F. (2014). Temporal optimization of image acquisition for land cover classification with random forest and MODIS time-series. International Journal Applied Earth Observation and Geoinformation, 34, 136–146.

    Article  Google Scholar 

  • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26, 217–222.

    Article  Google Scholar 

  • Puissant, A., Rougiera, S., & André, S. (2014). Object-oriented mapping of urban trees using random forest classifiers. International Journal of Applied Earth Observation and Geoinformation, 26, 235–245.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Chica-Olmo, V., Abarca-Hernandez, F., Atkinson, P. M., & Jeganathan, C. (2012a). Random forest classification of Mediterranean land covers using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 121, 93–107.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012b). An assessment of the effectiveness of a random forest classifier for landcover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.

    Article  Google Scholar 

  • Rodríguez-Galiano, V. F., Ghimire, B., Pardo-Igúzquiza, E., Chica-Olmo, M., & Congalton, R. G. (2012). Incorporating the downscaled Landsat TM thermal band in land-cover classification using random forest. Photogrammetric Engineering and Remote Sensing, 78, 129–137.

    Article  Google Scholar 

  • Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C., & Roberts, D. (2008). Mapping land-cover modifications over large areas: a comparison of machine learning algorithms. Remote Sensing of Environment, 112, 2272–2283.

    Article  Google Scholar 

  • Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507–2517.

    Article  CAS  Google Scholar 

  • Sobrino, J. A., Jiménez, M., & Paolinib, C. J. (2004). Surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440.

    Article  Google Scholar 

  • Srivastava, P. K., Majumdar, T. J., & Bhattacharya, A. K. (2009). Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research, 43, 1563–1574.

    Article  CAS  Google Scholar 

  • Stefanov, W. L., & Netzband, M. (2005). Assessment of ASTER land cover and MODIS NDVIData at multiple scales for ecological characterization of an arid urban center. Remote Sensing of Environment, 99, 31–43.

    Article  Google Scholar 

  • Van Beijma, S., Comber, A., & Lamb, A. (2014). Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 149, 118–129.

    Article  Google Scholar 

  • Wukelic, G. E., Gibbons, D. E., Martucci, I. M., & Foote, H. P. (1989). Radiometric calibration of Landsat thematic mapper thermal band. Remote Sensing of Environment, 28, 339–347.

    Article  Google Scholar 

  • Wulder, M. A., White, J. C., Goward, S. N., Masek, J. G., Irons, J. R., Herold, M., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2008). Landsat continuity: issues and opportunities for landcover monitoring. Remote Sensing of Environment, 112, 955–969.

    Article  Google Scholar 

  • Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2006). Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98, 317–328.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the USGS for providing Landsat 8 imagery, and the R development team and the EnMAP-Box team for making these software packages publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Eisavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisavi, V., Homayouni, S., Yazdi, A.M. et al. Land cover mapping based on random forest classification of multitemporal spectral and thermal images. Environ Monit Assess 187, 291 (2015). https://doi.org/10.1007/s10661-015-4489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4489-3

Keyword

Navigation