Skip to main content
Log in

2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20–35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir–Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g−1 for Cd(II) ion and 319.6 mg g−1 for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afkhami, A., & Moosavi, R. (2010). Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. Journal of Hazardous Materials, 174, 398–403.

    Article  CAS  Google Scholar 

  • Afkhami, A., Saber-Tehrani, M., & Bagheri, H. (2010). Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination, 263, 240–248.

    Article  CAS  Google Scholar 

  • Ali Fil, B., Boncukcuoğlu, R., Alper, E. Y., & Bayar, S. (2012a). Adsorption kinetics and isotherms for the removal of zinc ions from aqueous solutions by an Ion-exchange resin. Journal of the Chemical Society of Pakistan, 34(4), 841–848.

    Google Scholar 

  • Ali Fil, B., Boncukcuoğlu, R., Alper, E. Y., & Bayar, S. (2012b). Adsorption of Ni(II) on ion exchange resin: kinetics, equilibrium and thermodynamic studies. Korean Journal of Chemical Engineering, 29(9), 1232–1238.

    Article  Google Scholar 

  • Azizian, S. (2004). Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47–52.

    Article  CAS  Google Scholar 

  • Azizian, S., Haerifar, M., & Basiri-Parsa, J. (2007). Extended geometric method: a simple approach to derive adsorption rate constants of Langmuir–Freundlich kinetics. Chemosphere, 68, 2040–2046.

    Article  CAS  Google Scholar 

  • Bagheri, H., Afkhami, A., Saber-Tehrani, M., & Khoshsafar, H. (2012). Preparation and characterization of magnetic nanocomposite of schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water food and biological samples using atomic absorption spectrometry. Talanta, 97, 87–95.

    Article  CAS  Google Scholar 

  • Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186, 458–465.

    Article  CAS  Google Scholar 

  • Brouers, F., Sotolongo, O., Marquez, F., & Pirard, J. P. (2005). Microporous and heterogeneous surface adsorption isotherms arising from levy distributions. Physica A: Statistical Mechanics and its Applications, 349, 271–282.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Chiang, C. L., & Chen, C. R. (2007). Removal of heavy metal ions by a chelating resin containing glycine as chelating groups. Separation and Purification Technology, 54, 396–403.

    Article  CAS  Google Scholar 

  • Cheng, C., Wang, J., Yang, X., Li, A., & Philippe, C. (2014). Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials, 264, 332–341.

    Article  CAS  Google Scholar 

  • Freundlich, H., & Heller, W. (1939). The adsorption of cis- and trans-azobenzene. Journal of the American Chemical Society, 61, 2228–2230.

    Article  CAS  Google Scholar 

  • Guo, X., Du, B., Wei, Q., Yang, J., Hu, L., Yan, L., & Xu, W. (2014). Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. Journal of Hazardous Materials, 278, 211–220.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Suhas Nayak, A., Agarwal, S., Chaudhary, M., & Tyagi, I. (2014). Removal of Ni (II) ions from water using scrap tire. Journal of Molecular Liquids, 190, 215–222.

    Article  CAS  Google Scholar 

  • Haerifar, M., & Azizian, S. (2012). Fractal-like adsorption kinetics at the solid/solution interface. The Journal of Physical Chemistry C, 116, 13111–13119.

    Article  CAS  Google Scholar 

  • Haerifar, M., & Azizian, S. (2013). An exponential kinetic model for adsorption at solid/solution interface. Chemical Engineering Journal, 215–216, 65–71.

    Article  Google Scholar 

  • Hong, J., Zhu, Z., Lu, H., & Qiu, Y. (2014). Synthesis and arsenic adsorption performances of ferric-based layered double hydroxide with a-alanine intercalation. Chemical Engineering Journal, 252, 267–274.

    Article  CAS  Google Scholar 

  • Kaprara, E., Seridou, P., Tsiamili, V., Mitrakas, M., Vourlias, G., Tsiaoussis, I., Kaimakamis, G., Pavlidou, E., Andritsos, N., & Simeonidis, K. (2013). Cu-Zn powders as potential Cr(VI) adsorbents for drinking water. Journal of Hazardous Materials, 262, 606–613.

    Article  CAS  Google Scholar 

  • Kapur, M., & Mondal, M. K. (2014). Competitive sorption of Cu(II) and Ni(II) ions from aqueous solutions: kinetics, thermodynamics and desorption studies. Journal of the Taiwan Institute of Chemical Engineers, 45, 1803–1813.

    Article  CAS  Google Scholar 

  • Karami, H. (2013). Heavy metal removal from water by magnetite nanorods. Chemical Engineering Journal, 219, 209–216.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Li, M., Li, M. Y., Feng, C. G., & Zeng, Q. X. (2014). Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution. Applied Surface Science, 314, 1063–1069.

    Article  CAS  Google Scholar 

  • Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007). Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. Journal of Environmental Management, 84, 390–400.

    Article  CAS  Google Scholar 

  • Marczewski, A. W. (2010). Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Applied Surface Science, 256, 5145–5152.

    Article  CAS  Google Scholar 

  • Piazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Journal of Colloid and Interface Science, 152, 2–13.

    Article  Google Scholar 

  • Ruparelia, V. K., Duttagupta, S. P., Chatterjee, A. K., & Mukherji, S. (2008). Potential of carbon nanomaterials for removal of heavy metals from water. Desalination, 232, 145–156.

    Article  CAS  Google Scholar 

  • Ska, D. K. (2011). Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chemical Engineering Journal, 173, 520–529.

    Article  Google Scholar 

  • Sobhanardakani, S., Parvizimosaed, H., & Olyaie, E. (2013a). Heavy metals removal from waste waters using organic solid waste-rice husk. Environmental Science and Pollution Research, 20, 5265–5271.

    Article  CAS  Google Scholar 

  • Sobhanardakani, S., Zandipak, R., & Sahraei, R. (2013b). Removal of Janus Green dye from aqueous solutions using oxidized multi-walled carbon nanotubes. Toxicological & Environmental Chemistry, 95, 909–918.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006). Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal, 117, 79–91.

    Article  CAS  Google Scholar 

  • Sun, Y., Yue, Q., Gao, B., Gao, Y., Xu, X., Li, Q., & Wang, Y. (2014). Adsorption and cosorption of ciprofloxacin and Ni(II) on activated carbon-mechanism study. Journal of the Taiwan Institute of Chemical Engineers, 45, 681–688.

    Article  CAS  Google Scholar 

  • Temkin, M. J., & Pyzhev, V. (1940). Recent modifications to Langmuir isotherms. Acta Physiochim, 12, 217–222.

    Google Scholar 

  • Tombácz, E., Tóth, L. Y., Nesztor, D., Illés, E., Hajdú, A., Szekeres, M., & Vékás, L. (2013). Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 435, 91–96.

    Article  Google Scholar 

  • Türk, T., & Alp, I. (2014). Arsenic removal from aqueous solutions with Fe-hydrotalcite supported magnetite nanoparticle. Journal of Industrial and Engineering Chemistry, 20, 732–738.

    Article  Google Scholar 

  • Walton, K. S., & Snurr, R. Q. (2007). Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Journal of the American Chemical Society, 129, 8552–8556.

    Article  CAS  Google Scholar 

  • Wang, X. S., Zhu, L., & Lu, H. J. (2011). Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions. Desalination, 276, 154–160.

    Article  CAS  Google Scholar 

  • Wong, K. K., Lee, C. K., Low, K. S., & Haron, M. J. (2003). Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere, 50, 23–28.

    Article  CAS  Google Scholar 

  • Yang, S., Li, J., Shao, D., Hu, J., & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. Journal of Hazardous Materials, 166, 109–116.

    Article  CAS  Google Scholar 

  • Ye, N., Xie, Y., Shi, P., Gao, T., & Ma, J. (2014). Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption. Materials Science and Engineering: C, 45, 8–14.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Zhai, Y. H., Chang, X. J., He, Q., Huang, X. P., & Hu, Z. (2009). Determination of trace metals in natural samples by ICP–OES after preconcentration on modified silica gel and on modified silica nanoparticles. Microchimica Acta, 165, 319–327.

    Article  CAS  Google Scholar 

  • Zhang, S., Zhang, Y., Liu, J., Xu, Q., Xiao, H., Wang, X., Xu, H., & Zhou, J. (2013a). Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chemical Engineering Journal, 226, 30–38.

    Article  CAS  Google Scholar 

  • Zhang, Y. R., Wang, S. Q., Shen, S. L., & Zhao, B. X. (2013b). A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chemical Engineering Journal, 233, 258–264.

    Article  CAS  Google Scholar 

  • Zhu, Y., Hu, J., & Wang, J. (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials, 221–222, 155–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Sobhanardakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhanardakani, S., Zandipak, R. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples. Environ Monit Assess 187, 412 (2015). https://doi.org/10.1007/s10661-015-4635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4635-y

Keywords

Navigation