Skip to main content

Advertisement

Log in

Accuracy assessment of land cover/land use classifiers in dry and humid areas of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Land cover/land use (LCLU) maps are essential inputs for environmental analysis. Remote sensing provides an opportunity to construct LCLU maps of large geographic areas in a timely fashion. Knowing the most accurate classification method to produce LCLU maps based on site characteristics is necessary for the environment managers. The aim of this research is to examine the performance of various classification algorithms for LCLU mapping in dry and humid climates (from June to August). Testing is performed in three case studies from each of the two climates in Iran. The reference dataset of each image was randomly selected from the entire images and was randomly divided into training and validation set. Training sets included 400 pixels, and validation sets included 200 pixels of each LCLU. Results indicate that the support vector machine (SVM) and neural network methods can achieve higher overall accuracy (86.7 and 86.6 %) than other examined algorithms, with a slight advantage for the SVM. Dry areas exhibit higher classification difficulty as man-made features often have overlapping spectral responses to soil. A further observation is that spatial segregation and lower mixture of LCLU classes can increase classification overall accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhattarai, N., Quackenbush, L. J., Dougherty, M., & Marzen, L. J. (2015). A simple Landsat–MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution. International Journal of Remote Sensing, 36(1), 115–143.

    Article  Google Scholar 

  • Chen, H., Chang, N., Yu, R., & Huang, Y. (2009). Urban land use and land cover classification using the neural-fuzzy inference approach with Formosat-2 data. Journal of Applied Remote Sensing, 3(1), doi:10.1117/1.3265995.

  • Chen, C., Son, N., Chen, C., & Chang, L. (2011). Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier. Journal of Applied Remote Sensing, 5(1), 053525-053525-15.

  • De Martonne, E. (1926). In Une Nouvelle fonction climatologique. L’Indice d’aridité (pp. 449–458). Paris: Impr. Gauthier-Villars.

  • De Moraes, J. F. L., Seyler, F., Cerri, C. C., & Volkoff, B. (1998). Land cover mapping and carbon pools estimates in Rondonia, Brazil. International Journal of Remote Sensing, 19(5), 921–934.

    Article  Google Scholar 

  • Dixon, B., & Candade, N. (2008). Multispectral land use classification using neural networks and support vector machines: one or the other, or both? International Journal of Remote Sensing, 29(4), 1185–1206.

    Article  Google Scholar 

  • Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of Agriculture of Great Britain, 33, 503–513.

    Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201.

    Article  Google Scholar 

  • Foody, G. M. (2004). Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70(5), 627–633.

    Article  Google Scholar 

  • Ghimire, S., & Wang, H. (2012). Classification of image pixels based on minimum distance and hypothesis testing. Computational Statistics and Data Analysis, 56(7), 2273–2287.

    Article  Google Scholar 

  • Gualtieri, J. A., & Cromp, R. F. (1999). Support vector machines for hyperspectral remote sensing classification. Proceedings of SPIE - The International Society for Optical Engineering, 3584, 221–232.

    Google Scholar 

  • Halder, A., Ghosh, A., & Ghosh, S. (2011). Supervised and unsupervised land use map generation from remotely sensed images using ant based systems. Applied Soft Computing Journal, 11(8), 5770–5781.

    Article  Google Scholar 

  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749.

    Article  Google Scholar 

  • Jacqueminet, C., Kermadi, S., Michel, K., Béal, D., Gagnage, M., Branger, F., Jankowfsky, S., & Braud, I. (2013). Land cover mapping using aerial and VHR satellite images for distributed hydrological modelling of peri-urban catchments: application to the Yzeron catchment (Lyon, France). Journal of Hydrology, 485, 68–83.

    Article  Google Scholar 

  • Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective. Introductory digital image processing: a remote sensing perspective. Second edition.

  • Kavzoglu, T., & Mather, P. M. (2003). The use of back propagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4907–4938.

    Article  Google Scholar 

  • Kennaway, T. A., Helmer, E. H., Lefsky, M. A., Brandeis, T. A., & Sherrill, K. R. (2008). Mapping land cover and estimating forest structure using satellite imagery and coarse resolution lidar in the Virgin Islands. Journal of Applied Remote Sensing, 2(1), doi:10.1117/1.3063939.

  • Khatami, R., & Mountrakis, G. (2012). Implications of classification of methodological decisions in flooding analysis from Hurricane Katrina. Remote Sensing, 4(12), 3877–3891.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Luo, L., & Mountrakis, G. (2011). Converting local spectral and spatial information from a priori classifiers into contextual knowledge for impervious surface classification. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 579–587.

    Article  Google Scholar 

  • Mantero, P., Moser, G., & Serpico, S. B. (2005). Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 559–570.

    Article  Google Scholar 

  • Martinuzzi, S., Vierling, L. A., Gould, W. A., Vierling, K. T., & Hudak, A. T. (2009). Incorporating remotely sensed tree canopy cover data into broad scale assessments of wildlife habitat distribution and conservation. Journal of Applied Remote Sensing, 3(1), doi:10.1117/1.3279080.

  • Mohammady, M., Moradi, H. R., Zeinivand, H., & Temme, A. (2015). A comparison of supervised, unsupervised and synthetic land use classification methods in the north of Iran. International Journal of Environmental Science and Technology, 12(5), 1515–1526.

    Article  Google Scholar 

  • Mohammdy, M., Moradi, H. R., Zeinivand, H., Temme, A. J. A. M., Pourghasemi, H. R., & Alizadeh, H. (2014). Validating gap-filling of Landsat ETM+ satellite images in the Golestan Province, Iran. Arabian Journal of Geosciences, 7, 3633–3638.

    Article  Google Scholar 

  • Mountrakis, G., & Luo, L. (2011). Enhancing and replacing spectral information with intermediate structural inputs: a case study on impervious surface detection. Remote Sensing of Environment, 115(5), 1162–1170.

    Article  Google Scholar 

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.

    Article  Google Scholar 

  • Neuenschwander, A. L., Magruder, L. A., & Tyler, M. (2009). Land cover classification of small-footprint, full-waveform lidar data. Journal of Applied Remote Sensing, 3(1), doi:10.1117/1.3229944.

  • Núñez, L., Grosjean, M., & Cartajena, I. (2002). Human occupations and climate change in the Puna de Atacama, Chile. Science, 298(5594), 821–824.

    Article  Google Scholar 

  • Oommen, T., Misra, D., Twarakavi, N. K. C., Prakash, A., Sahoo, B., & Bandopadhyay, S. (2008). An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40(4), 409–424.

    Article  Google Scholar 

  • Pfanzagl, J. (1994). Parametric statistical theory. Hamböker. Berlin, DE: Walter de Gruyter. 207–208.

  • Richards, J. A., & Jia, X. (2006). Remote sensing digital image analysis: an introduction. Remote Sensing Digital Image Analysis: An Introduction, 1-439.

  • Sen, G., Bayramoglu, M. M., & Toksoy, D. (2015). Spatiotemporal changes of land use patterns in high mountain areas of Northeast Turkey: a case study in Maçka. Environmental Monitoring and Assessment, 187(8), 1–14.

    Article  Google Scholar 

  • Shaw, S. B., Marrs, J., Bhattarai, N., & Quackenbush, L. (2014). Longitudinal study of the impacts of land cover change on hydrologic response in four mesoscale watersheds in New York State, USA. Journal of Hydrology, 519(PA), 12–22.

  • Skizadeh, M. (2015). Assessment the performance of classification methods in water quality studies, a case study in Karaj River. Environmental Monitoring and Assessment, 187(9), 1–12.

    Google Scholar 

  • Soffianian, A., & Madanian, M. (2015). Monitoring land cover changes in Isfahan Province, Iran using Landsat satellite data. Environmental Monitoring and Assessment, 187(8), 1–15.

    Article  Google Scholar 

  • Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment, 62(1), 77–89.

    Article  Google Scholar 

  • Szuster, B. W., Chen, Q., & Borger, M. (2011). A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2), 525–532.

    Article  Google Scholar 

  • USGS, (2004). Phase 2 gap-fill algorithm: SLC-off gap-filled products gap-fill algorithm methodology. Available online at landsat.usgs.gov/documents/L7SLCGapFilledMethod.pdf. Accessed 28 Nov 2010.

  • Van Der Linden, S., Janz, A., Waske, B., Eiden, M., & Hostert, P. (2007). Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. Journal of Applied Remote Sensing, 1(1), doi: 10.1117/1.2813466.

  • Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289(5477), 284–288.

    Article  Google Scholar 

  • Vorovencii, I. (2014a). A change vector analysis technique for monitoring land cover changes in Copsa Mica, Romania, in the period 1985–2011. Environmental Monitoring and Assessment, 186(9), 5951–5968.

    Article  CAS  Google Scholar 

  • Vorovencii, I. (2014b). Assessment of some remote sensing techniques used to detect land use/land cover changes in South-East Transilvania, Romania. Environmental Monitoring and Assessment, 186(5), 2685–2699.

    Article  Google Scholar 

  • Walker, N. J., & Schulze, R. E. (2008). Climate change impacts on agro-ecosystem sustainability across three climate regions in the maize belt of South Africa. Agriculture, Ecosystems and Environment, 124(1–2), 114–124.

    Article  Google Scholar 

  • Wang, Z.-J., Jiao, J.-Y., Lei, B., & Su, Y. (2015). An approach for detecting five typical vegetation types on the Chinese Loess Plateau using Landsat TM data. Environmental Monitoring and Assessment, 187(9), 1–16.

    Article  Google Scholar 

  • Wentz, E. A., Stefanov, W. L., Gries, C., & Hope, D. (2006). Land use and land cover mapping from diverse data sources for an arid urban environments. Computers, Environment and Urban Systems, 30(3), 320–346.

    Article  Google Scholar 

  • Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2003). Distance metric learning, with application to clustering with side-information. Advances in Neural Information Processing Systems, 505–512.

  • Zhang, Y., Huang, D., Ji, M., & Xie, F. (2011). Image segmentation using PSO and PCM with Mahalanobis distance. Expert Systems with Applications, 38(7), 9036–9040.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Matthieu Molinier for his valuable suggestions during writing and development of this manuscript. Also, the authors would like to thank the editorial comments and anonymous reviewers for their helpful comments on the previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pourghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, S., Khatami, R., Mountrakis, G. et al. Accuracy assessment of land cover/land use classifiers in dry and humid areas of Iran. Environ Monit Assess 187, 641 (2015). https://doi.org/10.1007/s10661-015-4847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4847-1

Keywords

Navigation