Skip to main content

Advertisement

Log in

The influences of selected soil properties on Pb availability and its transfer to wheat (Triticum aestivum L.) in a polluted calcareous soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Accumulated anthropogenic heavy metals in the surface layer of agricultural soils may be transferred through the food chain via plant uptake processes. The objectives of this study were to assess the spatial distribution of lead (Pb) in the soils and wheat plants and to determine the soil properties which may affect the Pb transferring from soil to wheat plants in Zanjan Zinc Town area, northwestern Iran. A total of 110 topsoil samples (0–20 cm) were systematically collected from an agricultural area near a large metallurgical factory for the analyses of physico-chemical properties and total and bioavailable Pb concentrations. Furthermore, a total of 65 wheat samples collected at the same soil sampling locations were analyzed for Pb concentration in different plant parts. The results showed that elevated Pb concentrations were mostly found in soils located surrounding the industrial source of pollution. The bioavailable Pb concentration in the studied soils was up to 128.4 mg kg−1, which was relatively high considering the observed soil alkalinity. 24.6 % of the wheat grain samples exceeded the FAO/WHO maximum permitted concentration of Pb in wheat grain (0.2 mg kg−1). Correlation analyses revealed that soil organic matter, soil pH, and clay content showed insignificant correlation with Pb concentration in the soil and wheat grains, whereas calcium carbonate content showed significantly negative correlations with both total and bioavailable Pb in the soil, and Pb content in wheat grains, demonstrating the strong influences of calcium carbonate on Pb bioavailability in the polluted calcareous soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbaspour, A., & Golchin, A. (2011). Immobilization of heavy metals in a contaminated soil in Iran using di-ammonium phosphate, vermicompost and zeolite. Environmental Earth Sciences, 63, 935–943.

    Article  CAS  Google Scholar 

  • Adhikari, T., & Singh, M. V. (2003). Sorption characteristics of lead and cadmium in some soil in India. Geoderma, 114, 81–92.

    Article  CAS  Google Scholar 

  • Alloway, B. J., Jackson, A. P., & Morgan, H. (1990). The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Science of the Total Environment, 91, 233–236.

    Article  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders—strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Baker, D. L. (1990). Copper. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 151–176). London: Blackie & Sons.

    Google Scholar 

  • Bose, S., & Bhattacharyya, A. K. (2008). Heavy metals accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere, 70, 1264–1272.

    Article  CAS  Google Scholar 

  • Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K., & Abdeljaouad, S. (2013). Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma, 192, 227–236.

    Article  CAS  Google Scholar 

  • Brookins, D. G. (1988). Eh-pH diagrams for geochemistry. New York: Springer.

    Book  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007). Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water, Air, and Soil Pollution, 182, 245–261.

    Article  CAS  Google Scholar 

  • Elkhatib, E. A., Elshebiny, G. M., & Balba, A. M. (1991). Lead sorption in calcareous soils. Environmental Pollution, 69, 269–276.

    Article  CAS  Google Scholar 

  • Elkhatib, E. A., Elshebiny, G. M., & Balba, A. M. (1992). Kinetics of lead sorption in calcareous soils. Arid Soil Research and Rehabilitation, 6(4), 297–310.

    Article  CAS  Google Scholar 

  • FAO/WHO. (2012). Joint FAO/WHO food standards programme, Codex committee on contaminants in foods. The Netherlands: Maastricht.

    Google Scholar 

  • Farahmandkia, Z., Mehrasbi, M. R., & Sekhavatjou, M. S. (2010). Relationship between concentrations of heavy metals in wet precipitation and atmospheric PM10 particles in Zanjan, Iran. Journal of Environmental Health Science and Engineering, 8(1), 49–56.

    Google Scholar 

  • Garcia-Miragaya, J. (1984). Levels, chemical fractionation, and solubility of soil lead in roadside soils of Caracas, Venezuela. Soil Sciences, 138(2), 138–147.

    Article  Google Scholar 

  • Ghaderian, S. M., & Ghotbi-Ravandi, A. A. (2012). Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration, 123, 25–32.

    Article  CAS  Google Scholar 

  • Gharaie, H. A., Maftoun, M., and Karimian, N. (2002). Lead adsorption characteristics of selected calcareous soils of Iran and their relationship with soil properties. 17th WCSS, 14–21 August, Thailand.

  • Golia, E. E., Dimirkou, A., and Floras, St. A. (2015). Spatial monitoring of arsenic and heavy metals in the Almyros area, Central Greece. Statistical approach for assessing the sources of contamination. Environmental Monitoring and Assessment, doi: 10.1007/s10661-015-4624-1.

  • Gomes, P. C., Fontes, M. P. F., Da Silva, A. G., De Mendoca, E. S., & Netto, A. R. (2001). Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Science Society of America Journal, 65, 1115–1121.

    Article  CAS  Google Scholar 

  • Han, Y. M., Du, P. X., Cao, J. J., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.

    Article  CAS  Google Scholar 

  • Hong, S. C., Kim, M. S., & Chung, J. G. (2002). Adsorption characteristics of Pb (II) on calcite-type calcium carbonate by batch and continuous reactors. Journal of Korean Industrial and Engineering Chemistry, 8, 305–312.

    CAS  Google Scholar 

  • Hu, N. J., Luo, Y. M., Wu, L. H., & Song, J. (2007). A field lysimeter study of heavy metal movement down the profile of soils with multiple metal pollution during chelate-enhanced phytoremediation. International Journal of Phytoremediation, 9, 257–268.

    Article  CAS  Google Scholar 

  • Huang, M., Zhou, S., Sun, B., & Zhao, Q. (2008). Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Science of the Total Environment, 405, 54–61.

    Article  CAS  Google Scholar 

  • Iavazzo, P., Adamo, P., Boni, M., Hillier, S., & Zampella, M. (2012). Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. Journal of Geochemical Exploration, 113, 56–67.

    Article  CAS  Google Scholar 

  • Jalali, M., & Moharrami, S. (2007). Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma, 140, 156–163.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. Boca Raton: CRC press.

    Book  Google Scholar 

  • Karami, M., Afyuni, M., Rezainejad, Y., & Schulin, R. (2009). Heavy metal uptake by wheat from a sewage sludge-amended calcareous soil. Nutrient Cycling in Agroecosystems, 83, 51–61.

    Article  CAS  Google Scholar 

  • Karimi Nezhad, M. T., Tabatabaii, S. M., & Gholami, A. (2015). Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran. Journal of Geochemical Exploration, 152, 91–102.

    Article  CAS  Google Scholar 

  • Kopittke, P. M., Asher, C. J., Kopittke, R. A., & Menzies, N. W. (2008). Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environmental Pollution, 153(3), 548–554.

    Article  CAS  Google Scholar 

  • Kumar, P., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction—the use of plants to remove heavy metals from soils. Environmental Science and Technology, 29, 1232–1238.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Liu, W. X., Liu, J. W., Wu, M. Z., Li, Y., Zhao, Y., & Li, S. R. (2009). Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bulletin of Environmental Contamination and Toxicology, 82, 343–347.

    Article  CAS  Google Scholar 

  • Maftoun, M., Karimian, N., & Moshiri, F. (2002). Sorption characteristics of copper (II) in selected calcareous soils of Iran in relation to soil properties. Communications in Soil Science and Plant Analysis, 33, 2279–2289.

    Article  CAS  Google Scholar 

  • Manga, V. E., Agyingi, Ch. M., and Suh, Ch. E. (2014). Trace element soil quality status of Mt. Cameroon soils. Advances in Geology, doi: 10.1155/2014/894103.

  • McBride, M. B. (1980). Chemisorption of Cd on calcite surfaces. Soil Science Society of America Journal, 44, 8–26.

    Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • Nan, Z. R., Zhao, C. Y., Li, J. J., Chen, F. H., & Sun, W. (2002). Relations between boil properties and selected heavy metal concentrations in spring wheat (Triticum aestivum L.) grown in contaminated soils. Water, Air, and Soil Pollution, 133, 205–213.

    Article  CAS  Google Scholar 

  • Parizanganeh, A., Hajisoltani, P., & Zamani, A. (2010). Concentration, distribution and comparison of total and bioavailable metals in top soils and plants accumulation in Zanjan Zinc Industrial Town-Iran. Procedia Environmental Sciences, 2, 167–174.

    Article  Google Scholar 

  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry and Cell Biology, 41, 1665–1677.

    Article  CAS  Google Scholar 

  • Ponizovsky, A., & Mironenko, E. (2001). Speciation and sorption of lead (II) in soils. In I. K. Iskandar & M. B. Kirkham (Eds.), Trace elements in soil bioavailability, flux, and transfer. Boca Raton: CRC Press.

    Google Scholar 

  • Qishlaqi, A., Moore, F., & Forghani, G. (2009). Characterization of metal pollution in soils under two land use patterns in the Angouran region, NW Iran; a study based on multivariate data analysis. Journal of Hazardous Materials, 172, 374–384.

    Article  CAS  Google Scholar 

  • Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agriculture, Ecosystems and Environment, 109, 310–322.

    Article  CAS  Google Scholar 

  • Reyhanitabar, A., Ardalan, M. M., Karimian, N., Savaghebi, G. R., & Gilkes, R. G. (2011). Kinetics of zinc sorption by some calcareous soils of Iran. Journal of Agricultural Science and Technology, 13, 263–272.

    CAS  Google Scholar 

  • Reyhanitabar, A., Karimian, N., Ardalan, M., Savaghebi, G. R., & Channadha, G. (2007). Comparison of five adsorption isotherms for prediction of zinc retention in calcareous soils and the relationship of their coefficients with soil characteristics. Communications in Soil Science and Plant Analysis, 38, 147–158.

    Article  CAS  Google Scholar 

  • Riffaldi, R., Minzi, R. L., & Soldatini, G. F. (1976). Pb adsorption by soil. Water, Air and Soil Pollution, 22, 10–18.

    Google Scholar 

  • Saba, G., Parizanganeh, A. H., Zamani, A., & Saba, J. (2015). Phytoremediation of heavy metals contaminated environments: screening for native accumulator plants in Zanjan-Iran. International Journal of Environmental Research, 9(1), 309–316.

    CAS  Google Scholar 

  • Safari-Sinegani, A. A., & Mirahamdi-Araki, H. (2010). The effects of soil properties and temperature on the adsorption isotherms of lead on some temperate and semiarid surface soil of Iran. Environmental Chemistry Letters, 8, 129–137.

    Article  Google Scholar 

  • Santillan-Medrano, J., & Jurinak, J. J. (1975). The chemistry of lead and cadmium in soil: solid phase formation. Soil Science Society of America Journal, 39, 851–856.

    Article  CAS  Google Scholar 

  • Sayyad, G., Afyuni, M., Mousavi, S. F., Abbaspour, K. C., Richards, B. K., & Schulin, R. (2010). Transport of Cd, Cu, Pb and Zn in a calcareous soil under wheat and safflower cultivation—a column study. Geoderma, 154, 311–320.

    Article  CAS  Google Scholar 

  • Sipos, P., Németh, T., Kovács Kis, V., & Mohai, I. (2008). Sorption of copper, zinc and lead on soil mineral phases. Chemosphere, 73, 461–469.

    Article  CAS  Google Scholar 

  • Sipos, P., Németh, T., Mohai, I., & Dódony, I. (2005). Effect of soil composition on adsorption of lead as reflected by a study on a natural forest soil profile. Geoderma, 124, 363–374.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (2014a). Keys to soil taxonomy (12th ed.). USA: NRCS, USDA.

    Google Scholar 

  • Soil Survey Staff. (2014b). Kellogg soil survey laboratory methods manual. In Burt and Soil Survey Staff (Ed.), Soil survey investigations report no. 42, version 5.0. R. USA: U.S. Department of Agriculture, Natural Resources Conservation Service.

    Google Scholar 

  • Sparks, D. L. (1995). Environmental soil chemistry. London: Academic.

    Google Scholar 

  • Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society of America Journal, 46, 260–264.

    Article  CAS  Google Scholar 

  • Van Gestel, C. A. M., Rademaker, M. C. J., & Van Straalen, N. M. (1995). Capacity controlling parameters and their impact on metal toxicity. In W. Salomons & W. M. Stigliani (Eds.), Biogeodynamics of pollutants in soils and sediments (pp. 171–192). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Vega, F. A., Andrade, M. L., & Covelo, E. F. (2010). Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: comparison of linear regression and tree regression analyses. Journal of Hazardous Materials, 174, 522–533.

    Article  CAS  Google Scholar 

  • Westerman, R. L. (Ed.). (1990). Soil testing and plant analysis. Madison, Wisconsin: Soil Science Society of America.

    Google Scholar 

  • Yang, J., Chen, T., Lei, M., Zhou, X., Huang, Q., Ma, C., Gu, R., & Guo, G. (2015). New isotopic evidence of lead contamination in wheat grain from atmospheric fallout. Environmental Science and Pollution Research, 22, 14710–14716.

    Article  CAS  Google Scholar 

  • Zachara, J. M., Cowain, C. E., & Resch, C. T. (1991). Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta, 55, 1549–1562.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial and technical support for this research from the University of Zanjan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Safari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, Y., Delavar, MA., Zhang, C. et al. The influences of selected soil properties on Pb availability and its transfer to wheat (Triticum aestivum L.) in a polluted calcareous soil. Environ Monit Assess 187, 773 (2015). https://doi.org/10.1007/s10661-015-5001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5001-9

Keywords

Navigation