Skip to main content

Advertisement

Log in

Land-use and land-cover change in Western Ghats of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Western Ghats (WG) of India, one of the hottest biodiversity hotspots in the world, has witnessed major land-use and land-cover (LULC) change in recent times. The present research was aimed at studying the patterns of LULC change in WG during 1985–1995–2005, understanding the major drivers that caused such change, and projecting the future (2025) spatial distribution of forest using coupled logistic regression and Markov model. The International Geosphere Biosphere Program (IGBP) classification scheme was mainly followed in LULC characterization and change analysis. The single-step Markov model was used to project the forest demand. The spatial allocation of such forest demand was based on the predicted probabilities derived through logistic regression model. The R statistical package was used to set the allocation rules. The projection model was selected based on Akaike information criterion (AIC) and area under receiver operating characteristic (ROC) curve. The actual and projected areas of forest in 2005 were compared before making projection for 2025. It was observed that forest degradation has reduced from 1985–1995 to 1995–2005. The study obtained important insights about the drivers and their impacts on LULC simulations. To the best of our knowledge, this is the first attempt where projection of future state of forest in entire WG is made based on decadal LULC and socio-economic datasets at the Taluka (sub-district) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agarwal, C., Green, G.M., Grove, J.M., Evans, T.P., & Schweik, C.M. (2002). A review and assessment of land-use change models: dynamics of space, time, and human choice. General Technical. Report. NE-297. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 61 p.

  • Alves, D. S. (2002). Space-time dynamics of deforestation in Brazilian Amazonia. International Journal of Remote Sensing, 23, 2903–2908.

    Article  Google Scholar 

  • Anonymous. (2001). Growing Populations, Changing Landscapes: Studies from India, China, and the United States. Washington, DC: Indian National Science Academy, Chinese Academy of Sciences, U.S. National Academy of Science, National Academy Press, ISBN: 0-309-57018-2.

  • Anonymous. (2011). Drivers of Land Use/ Land Cover Change: A case study in Narmada River basin, for Land use/land cover dynamics and impact of human dimensions in Indian River Basins, A project under ISRO-GBP program. Scientific Report, 2. Indian Institute of Remote Sensing, Dehradun.

  • Anonymous. (2014). LULC Dynamics Modeling Platform (ILULC-DMP) v 1.0. Indian Institute of Remote Sensing, Department of Space, Govt. of India.

  • Anonymous. (2015). R package, ‘verification’, version-1.42, NCAR research application laboratory.

  • Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observations, 21, 265–275.

    Article  Google Scholar 

  • Aspinall, R. (2004). Modelling land use change with generalised linear models—a multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana. Journal of Environmental Management, 72, 91–103.

    Article  Google Scholar 

  • Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, E., Hijmans, R., & Rouault, E. (2015). rgdal bindings for the geospatial data abstract library. https://cran.r-project.org/web/packages/rgdal/index.html. Accessed 31 August 2015.

  • Chandran, S. M. D. (1997). On the ecological history of the Western Ghats. Current Science, 73(2), 146–155.

    Google Scholar 

  • Chandran, M. D. S. (1993). Vegetational changes in the evergreen forest belt of Uttara Kannada district of Uttara Kannada. PhD. Thesis submitted to Karnataka University, Dharward.

  • Chatterjee, S., & Hadi, A. S. (2006). Regression analysis by example (New Jersey: fourth edition). Hoboken: John Willey & Sons, Inc.

    Book  Google Scholar 

  • Cropper, M., & Griffiths, C. (1994). The interaction of population growth and environmental quality. American Economic Review, 84, 250–254.

    Google Scholar 

  • Daniels, R. J. R. (1991). The problem of conserving amphibians in the Western Ghats. Current Science, 60, 630–632.

    Google Scholar 

  • Daniels, R. J. R. (2003). Impact of tea cultivation on anurans in the Western Ghats. Current Science, 85(10), 1415–1422.

    Google Scholar 

  • Deacon, R. T. (1994). Deforestation and rule of law in a cross section of countries. Land Economics, 70(4), 414–30.

    Article  Google Scholar 

  • Defries, R. S., Foley, J. A., & Asner, G. P. (2004). Land-use choices: balancing human needs and ecosystem function. Frontiers in Ecology and Environment, 2, 249–257.

    Article  Google Scholar 

  • Defries, R.S., Rudel, T., Uriarte, M. & Hansen, M. (2010). Deforestation driven by urban population growth and agricultural trade in the twenty first century. Nature Geoscience, doi: 10.1038/NGEO756 1–4.

  • Dikshit, K. R. (1991). The forests and the floral landscapes. In Environment, Forest Ecology and Man in the Western Ghats (pp. 69–83). Jaipur, India: Rawat Publications.

    Google Scholar 

  • Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and Environment, 6, 439–447.

    Article  Google Scholar 

  • Ellis, E. C. (2011). Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of Royal Society. doi:10.1098/rsta.2010.0331.

    Google Scholar 

  • Ferraz, S. F. D. B., Vettorazzi, C. A., & Theobald, D. M. (2009). Using indicators of deforestation and land-use dynamics to support conservation strategies: a case study of central Rondonia, Brazil. Forest Ecology and Management, 257(7), 1586–1595.

    Article  Google Scholar 

  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309, 570–574.

    Article  CAS  Google Scholar 

  • Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., et al. (2002). Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of Environment, 83, 287–302.

    Article  Google Scholar 

  • Gadgil, M. (2011). Report of the Western Ghats Ecology Expert Panel. Submitted to, The Ministry of Environment and Forests, Government of India. 31 August 2011.

  • Geist, H. J., & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. Bioscience, 52, 143–150.

    Article  Google Scholar 

  • George, P. S., & Chattopadhyay, S. (2001). Population and land use in Kerala. In Growing Populations, Changing Landscapes, Studies from India, China and the United States (pp. 79–106). Washington DC: National Academy of Sciences.

    Google Scholar 

  • Goldewijk, K. K., Beusen, A., Drecht, G. V., & Vos, M. D. (2010). The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2010.00587.x.

  • Golub, A. A., Henderson, B. B., Thomas, W. H., Gerberb, P. J., Rose, S. K., & Sohngend, B. (2013). Global climate policy impacts on livestock, land use, livelihoods, and food security. Proceedings of National Academy of Sciences (PNAS), 110(52), 20894–20899.

    Article  CAS  Google Scholar 

  • Grothendieck, G. (2014). SQLDF package in R. https://cran.r-project.org/web/packages/sqldf/index.html. Accessed 31 August 2015.

  • Hijmans, R. J., Etten, J.V., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., et al. (2015). Package ‘raster’. https://cran.r-project.org/web/packages/raster/raster.pdf. Accessed 30 November 2015.

  • Hosonuma, N., Herold, M., Veronique, D. S., DeFries, R. S., Brockhaus, M., Verchot, L., et al. (2012). An assessment of deforestation and forest degradation drivers in developing countries. Environmental Research Letters, 7, 1–12.

    Article  Google Scholar 

  • Jha, C.S. (2000). Deforestation and land-use changes in Western Ghats, India. Current Science,79,(2), 231–238.

  • Krishnan, R., Sabin, T. P., Ayantika, D. C., Kitoh, A., Sugi, M., Murakami, H., et al. (2013). Will the South Asian Monsoon overturning circulation stabilize any further? Climate Dynamics, 40, 187–211.

    Article  Google Scholar 

  • Kuemmerle, T., Erb, K., Meyfroidt, P., Muller, D., Verburg, P. H., Estel, S., et al. (2013). Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 5, 484–493.

    Article  Google Scholar 

  • Kumar, B. M. (2005). Land use in Kerala: changing scenarios and shifting paradigms. Journal of Tropical Agriculture, 42(1–2), 1–12.

    Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelson, A., Bruce, J. W., et al. (2001). The causes of land-use land-cover change: moving beyond the myths. Global Environmental Change, 11(4), 261–269.

    Article  Google Scholar 

  • Lawrence, K. D., Klimberg, R. K., & Lawrence, S. M. (2009). Markovian Forecasting Models. In: Fundamentals of Forecasting Using Excel. Industrial press.

    Google Scholar 

  • Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., et al. (2014). A long-term Global Land Surface Satellite (GLASS) data-set for environmental studies. International Journal of Digital Earth. doi:10.1080/17538947.2013.805262.

    Google Scholar 

  • Logan, W. (1905). Malabar vol II. Agricultural Statistics of British India for 1900–01 to 1904–05.

  • Loveland, T.R., Acevedo W (2006) Land cover change in the Eastern United States, US Geological Survey. http://landcovertrends.usgs.gov/east/regionalSummary.html. Accessed 18 April 2016.

  • Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu Yang, L., et al. (2000). Development of global landcover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6&7), 1303–1330.

    Article  Google Scholar 

  • Menon, S., & Bawa, K. S. (1998). Deforestation in the tropics: reconciling disparities in estimates for India. Ambio, 27(7), 567–577.

    Google Scholar 

  • Meyer, W. B., & Turner, B. L., II. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23, 39–61.

    Article  Google Scholar 

  • Meyfroidt, P., Lambin, E. F., Erb, K. H., & Hertel, T. W. (2013). Globalisation of land-use: distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 5, 1–7.

    Article  Google Scholar 

  • Meyfroidt, P., Rudel, T. K., & Lambin, E. F. (2010). Forest transitions, trade and the global displacement of land use. Proceedings of National Academy of Sciences (PNAS), 107(49), 20917–20922.

    Article  CAS  Google Scholar 

  • Meyfroidt, P., & Lambin, E. F. (2009). Forest transition in Vietnam and displacement of deforestation abroad. Proceedings of National Academy of Sciences (PNAS), 106, 16139–16144.

    Article  CAS  Google Scholar 

  • Mujumdar, P.P. (2015). Lecture 22, Markov chains – 1, Stochastic Hydrology, Department of Civil Engineering, Indian Institute of Science, Banglore. http://nptel.ac.in/courses/105108079/22. Accessed 26 August 2015.

  • Muller, M. R., & Middleton, J. (1994). A Markov model of land-use change dynamics in Niagra Region, Ontario, Canada. Landscape Ecology, 9(2), 151–157.

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, A. B. G., & Kent, J. (2000). Biodiversity Hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • NSSO (2015). Energy sources of Indian households for cooking and lightening. 2011–12. Report 567, National Sample Survey Office, Ministry of Statistics and Program Implementation, Government of India.

  • Paranjpye (2011). Threats to the Western Ghats of Maharashtra: An overview. Western Ghats Ecology Expert Panel Commissioned paper. Report of the Western Ghats Ecology Expert Panel, submitted to The Ministry of Environment and Forests, Govt. of India.

  • Pascal, J. P. (1988). Wet evergreen forests of the Western Ghats, India. Tropical Ecology, 45(2), 281–292.

    Google Scholar 

  • Pearce, J., & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modeling, 133, 225–245.

    Article  Google Scholar 

  • Pouchepadass, J. (1990). The ecological history of Central Western Ghats in the modern period: a preliminary survey. Pondy papers in Social Sciences. French Institute, Pondicherry: Department of Social Sciences.

    Google Scholar 

  • Portman, F. T., Seibert, S., & Doll, P. (2010). MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high resolution data set for agricultural and hydrological modelling. Global Biogeochemical Cycles. doi:10.1029/2008GB003435.

    Google Scholar 

  • Prakash, B. A. (1987). Agricultural Development of Kerala from 1800 AD to 1980 AD: A survey of studies. Working paper no. 220. Centre for Development Studies Ulloor, Trivendrum – 11.

  • Prasad, S. N., Vijayan, L., Balachandran, S., Ramachandran, V. S., & Verghesse, C. P. A. (1998). Conservation planning for the Western Ghats of Kerala: I. A GIS approach for location of biodiversity hot spots. Current Science, 75(3), 211–219.

    Google Scholar 

  • Rajendran, K., Kitoh, A., Srinivasan, J., Mizuta, R., & Krishnan, R. (2012). Monsoon circulation interaction with Western Ghats orography under changing climate. Theoretical Applied Climatology. doi:10.1007/s00704-012-0690-2.

    Google Scholar 

  • Rossiter, D. G., & Loza, A. (2012). Analysing land-cover change with logistic regression in R. Technical note, version 2.32, February 06, 2012. University of Twente, Faculty of Geoinformation science & Earth Observation (ITC), Enschede (NL).

  • Roy, P. S., Roy, A., Joshi, P. K., Kale, M. P., Srivastava, V. K., Srivastav, S. K., et al. (2015). India’s decadal (1985-1995-2005) land use and land cover spatial database: a new resource for studying land dynamics and climate change. Remote Sensing. doi:10.3390/rs70302401.

    Google Scholar 

  • Rudel, T. K., Defries, R., Asner, G. P., & Laurance, W. F. (2009). Changing drivers of deforestation and new opportunities for conservation. Conservation Biology, 23(6), 1396–1405.

    Article  Google Scholar 

  • Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., et al. (2002). The human footprint and the last of the wild. Bioscience, 52, 891–904.

    Article  Google Scholar 

  • Schneider, A., Friedl, M. A., & Potere, D. (2009). A new map of global urban extent from MODIS satellite data. Environmental Research Letters. doi:10.1088/1748-9326/4/4/044003.

    Google Scholar 

  • Sexton, J. O., Song, X. P., Feng, M., Noojipady, P., Anand, A., Huang, C., et al. (2013a). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth. doi:10.1080/17538947.2013.786146.

    Google Scholar 

  • Sexton, J. O., Urban, D. L., Donohue, M. J., & Song, C. (2013b). Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sensing of Environment, 128, 246–258.

    Article  Google Scholar 

  • Sing, T., Sander, O., Beernwinkel, N., & Lengauer, T. (2015). R package ‘ROCR’. https://cran.r-project.org/web/packages/ROCR/index.html. Accessed 31 August 2015.

  • Sleeter, B. M., Liu, J., Daniel, C., Frid, L., & Zhu, Z. (2015). An integrated approach to modeling changes in land use, land cover, and disturbance and their impact on ecosystem carbon dynamics: a case study in the Sierra Nevada Mountains of California. AIMS Environmental Science. doi:10.3934/envirosci.2015.3.577.

    Google Scholar 

  • Stevenson, J. R., Villoria, N., Byerlee, D., Kelley, T., & Maredia, M. (2013). Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proceedings of National American Society (PNAS), 110(21), 8363–8368.

    Article  CAS  Google Scholar 

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.

    Article  CAS  Google Scholar 

  • Tawde, S. A. (2013). Master of technology in remote sensing and GIS, thesis. Vishakhapatnam: Andhra University. Investigation of orographically induced rainfall over Western Ghats and its association with other monsoon parameters.

    Google Scholar 

  • Turner, M. G. (1988). A spatial simulation model of land use changes in a Piedmont County in Georgia. Applied Mathematics and Computation, 27, 39–51.

    Article  Google Scholar 

  • Unni, J. (1983). Changes in the cropping pattern in Kerala: some evidence on substitution of coconut for rice, 1960–61 to 1978–79. Economic and Political Weekly, 18(39), A100–A107.

    Google Scholar 

  • Wickham, H., James, D.A., Falcon, S., & Liam H. (2014). Package – ‘RSQlite’. Available: https://cran.r-project.org/web/packages/RSQLite/RSQLite.pdf. Accessed 02 September 2015.

  • Wilson, T. S., Sleeter, B. M., & Davis, A. W. (2014a). Potential future land use threats to California’s protected areas. Regional Environmental Change. doi:10.1007/s10113-014-0686-9.

    Google Scholar 

  • Wilson, T. S., Sleeter, B. M., Sleeter, R. R., & Soulard, C. E. (2014b). Land use threats and protected areas: a scenario-based, landscape level approach. Land, 3(2), 362–389.

    Article  Google Scholar 

  • Wilson, T. S., Sleeter, B. M., Sherba, J., & D. Cameron (2015). Land-use impacts on water resources and protected areas: applications of state-and-transition simulation modeling of future scenarios. AIMS Environmental Science, doi=10.3934/environsci.2015.2.282

  • Xavier, R., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., & Müller, M. (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics. doi:10.1186/1471-2105-12-77.

    Google Scholar 

Download references

Acknowledgments

The present research was carried out under the Indian Space Research Organisation-Geosphere Biosphere Program (ISRO-GBP), funded by the Department of Space, Govt. of India. Authors are thankful to Department of Space for providing satellite and other ancillary datasets to carry out the research. The support provided by forest departments of Gujarat, Maharashtra, Goa, Karnataka, Kerala, and Tamil Nadu in carrying out field investigations is acknowledged. Authors acknowledge International Institute of Population Sciences, Mumbai, for providing access to decadal census datasets. The quality control team of C-DAC is acknowledged for their support in preparing the land-use and land-cover maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish P. Kale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, M.P., Chavan, M., Pardeshi, S. et al. Land-use and land-cover change in Western Ghats of India. Environ Monit Assess 188, 387 (2016). https://doi.org/10.1007/s10661-016-5369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5369-1

Keywords

Navigation