Skip to main content

Advertisement

Log in

Sorption kinetics of zinc and nickel on modified chitosan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the effect of equilibration time on adsorption of zinc [Zn(II)] and nickel [Ni(II)] on pure and modified chitosan beads. The initial adsorption of Zn(II) was high on molybdenum (Mo)-impregnated chitosan beads (MoCB) during the initial 60 min. However, after 240 min, Zn(II) adsorption occurred more on single super phosphate chitosan beads (SSPCB), followed by monocalcium phosphate chitosan beads (MCPCB), untreated pure chitosan beads (UCB), and MoCB. Similarly, Ni(II) adsorption was greatest on MoCB during the initial 60 min. At the conclusion of the experiment (at 240 min), the greatest adsorption was occurred on MCPCB, followed by MoCB, UCB, and SSPCB. Chemical sorption and intra-particle diffusion were probably the dominant processes responsible for Zn(II) and Ni(II) sorption onto chitosan beads. The results demonstrated that modified chitosan beads were effective in adsorbing Zn and Ni and hence, could be used for the removal of these toxic metals from soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99, 1359–1367.

    Article  CAS  Google Scholar 

  • Agulló, E., Mato, R., Tapia, C., Heras, A., Román, J.S., Argüelles, W., Goycoolea, F., Mayorga, A., Nakamatsu, J., Pastor A (2004) Quitina y Quitosano: Obtención, Caracterización y Aplicaciones, Pontificia Universidad Católicadel Perú, Fondo Editorial, 244–245.

  • Atkinson, R. J., Posner, A. M., & Quirk, J. P. (1967). Adsorption of potential determining ions at the ferric oxide aqueous electrolyte interface. Journal of Physical Chemistry, 71, 550–558.

    Article  CAS  Google Scholar 

  • Basak, A., Mandal, L. N., & Haldar, M. (1982). Interaction of phosphorus and molybdenum and the availability of zinc, copper, manganese, molybdenum and phosphorus in waterlogged rice soil. Plant and Soil, 68, 271–278.

    Article  CAS  Google Scholar 

  • Benavente, M. (2008). Adsorption of Metallic Ions onto Chitosan: Equilibrium and Kinetic Studies. Licentiate Thesis. TRITA CHE Report 2008:44. ISBN 978–91–7178–986–0. Link: www.diva-portal.org/smash/get/diva2:13755/FULLTEXT01.pdf; Accessed on 1st August 2016.

  • Bhattacharyya, K. G., & Sharma, A. (2004). Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo red solutions. Journal of Environmental Management, 71, 217–229.

    Article  Google Scholar 

  • Bolan, N. S., Syers, J. K., & Summer, M. E. (1993). Calcium-induced sulphate adsorption by soils. Soil Science Society of America Proceedings, 57, 691–696.

    Article  CAS  Google Scholar 

  • Bowden, J. W., Nagarajah, S., Barrow, N. J., Posner, A. M., & Quirk, J. P. (1980). Describing the adsorption of phosphate, citrate and selenite on a variable charge mineral surface. Australian Journal of Soil Research, 18, 49–60.

    Article  CAS  Google Scholar 

  • Breeuwsma, A., & Lyklema, J. (1973). Physical and chemical adsorption of ions in the electrical double layer on hematite (a- Fe2O3). Journal of Colloid Interface Science, 43, 437–442.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Burke, A., Yilmaz, E., & Hasirci, N. (2002). Iron (III) ion removal from solution through adsorption on chitosan. Journal of Applied Polymer Science, 84, 1185–1192.

    Article  CAS  Google Scholar 

  • Chakrabarty, T., Kumar, M. & Shahi, V. K. (2010). Chitosan based membranes for separation, pervaporation and fuel cell applications: Recent Developments. Biopolymers, Magdy Elnashar (Ed.), ISBN: 978-953-307-109-1, InTech, Available from: http://www.intechopen.com/books/biopolymers/chitosan-basedmembranes-; Accessed on 25th July 2016.

  • Chen, C., Li, X., Zhao, D., Tan, X., & Wang, X. (2007). Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids and surfaces a: physicochemical and engineering aspects, 302, 449–454.

    Article  CAS  Google Scholar 

  • Chen, A. H., Yang, C. Y., Chen, C. Y., & Chen, C. W. (2009). The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal of Hazardous Materials, 163, 1068.

    Article  CAS  Google Scholar 

  • Chien, S. H., & Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44, 265–268.

    Article  CAS  Google Scholar 

  • Chu, K. H. (2002). Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 90, 77–95.

    Article  CAS  Google Scholar 

  • Dambies, L., Vincent, T., Domard, A., & Guibal, E. (2001). Preparation of chitosan gel beads by ionotropic molybdate gelation. Biomacromolecules, 2, 1198–1205.

    Article  CAS  Google Scholar 

  • Davies, J. A., James, R. O., & Leckie, J. O. (1978). Surface ionization and complexation at the oxide/water interface. Journal of Colloid Interface Science, 63, 480–499.

    Article  Google Scholar 

  • Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42, 35–56.

    Article  CAS  Google Scholar 

  • Dhakal, R. P., Ghimire, K. N., & Inoue, K. (2005). Adsorptive separation of heavy metal from an aquatic environment using orange waste. Hydrometallurgy, 79, 182–190.

    Article  CAS  Google Scholar 

  • Ding, P., Huang, K. L., Li, G. Y., Liu, Y. F., & Zeng, W. W. (2006). Kinetics of adsorption of Zn(II) ion on chitosan derivatives. International Journal of Biological Macromolecules, 39, 222.

    Article  CAS  Google Scholar 

  • Duarte, A. R. C., Mano, J. F., & Reis, R. J. (2010). Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: preparation and characterization. The Journal of Supercritical Fluids, 54, 282–289.

    Article  CAS  Google Scholar 

  • Eddy, N. O., & Odoemelam, S. A. (2009). Modelling of the adsorption of Zn2+ from aqueous solution by modified and pure tiger nut shell. African Journal of Pure and Applied Chemistry, 3, 145–151.

    CAS  Google Scholar 

  • Fu, J., Ji, J., Fan, D. & Shen, J. (2006). Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Journal of Biomedical Materials Research, Part A DOI 10.1002/jbm.a. Wiley Inter Science  (www.interscience.wiley.com). DOI: 10.1002/jbm.a.30819.

  • Gang, S., & Weixing, S. (1998). Sunflower stalk as adsorbents for the removal of metal ions from waste water. Industrial & Engineering Chemistry Research, 37, 1324–1328.

    Article  Google Scholar 

  • Gerente, C., Lee, V. K. C., Cloirec, P. L., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Critical Reviews in Environmental Science & Technology, 37, 41–127.

    Article  CAS  Google Scholar 

  • Ghosh, M. M., & Yuan, J. R. (1987). Adsorption of inorganic arsenic and organo-arsenicals on hydrous oxide. Environmental Progress, 6, 150–156.

    Article  CAS  Google Scholar 

  • Gillman, G. P., & Sumpter, E. A. (1986). Modification to the compulsive exchange method for measuring exchange characteristics of soils. Australian Journal of Soil Research, 24, 61–66. doi:10.1071/SR9860061.

    Article  CAS  Google Scholar 

  • Guibal, E., Milot, C., & Tobin, J. M. (1998). Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Industrial & Engineering Chemistry, 37, 1454–1463.

    Article  Google Scholar 

  • Hastuti, B., Masykur, A. and Hadi, S. (2016). Modification of chitosan by swelling and crosslinking using epichlorohydrin as heavy metal Cr (VI) adsorbent in batik industry wastes. IOP Conf. Series: Materials Science and Engineering 107 (2016) 012020 doi:10.1088/1757-899X/107/1/012020. Available at http://iopscience.iop.org/article/10.1088/1757-899X/107/1/012020/pdf (accessed on 7th July 2016).

  • Hingston, F.J. (1970). Specific adsorption of anions on geothite and gibbsite. Ph.D. Thesis, Univ. Western Australia.

  • Hingston, F. J., Posner, A. M., & Quirk, J. P. (1972). Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes. Journal of Soil Science, 23, 177–192.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Mckay, G., Wase, D. A. J., & Forster, C. F. (2000). Study of the sorption of divalent metal ions onto peat. Adsorption Science Technology, 18, 639–650.

    Article  CAS  Google Scholar 

  • Igwe, J. C., Abia, A. A., & Ibeh, C. A. (2008). Adsorption kinetics and intra-particulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. International Journal of Environmental Science and Technology, 5, 83–92.

    Article  CAS  Google Scholar 

  • Ikhsan, J., Wells, J. D., Johnson, B. B., & Angove, M. J. (2005). Surface complexation modeling of the sorption of Zn(II) by montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252, 33–41.

    Article  CAS  Google Scholar 

  • Jeon, C., & Höll, H. (2003). Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research, 37, 4770–4780.

    Article  CAS  Google Scholar 

  • Kamari, A., Wan Ngah, W. S., & Liew, L. K. (2009). Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences, 21, 296–302.

    Article  Google Scholar 

  • Kraepiel, A. M. L., Kellers, K., & Morel, F. M. M. (1999). A model for metal adsorption on montmorillonite. Journal of Colloid Interface Science, 210, 43–54.

    Article  CAS  Google Scholar 

  • Kumar, D., Singh, R. R., Singh, S. P., Jha, S., & Srivastava, P. (2011). Selection of suitable extractant for predicting the response of chickpea to zinc application in vertisols. Communications in Soil Science and Plant Analysis, 42, 728–740.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Suensk Vetenskapsakademiens Handlingar, 241, 1–39.

  • Lambert, R., Grant, C. & Sauvé, S. (2007). Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Science of the Total Environment, 378, 293–305.

  • Li, Q., Zhai, J. P., Zhang, W. Y., Wang, M. M., & Zhou, J. (2007). Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167.

    Article  CAS  Google Scholar 

  • Low, K. S., Lee, C. K., & Liew, S. C. (2000). Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochemistry, 36, 59–64.

    Article  CAS  Google Scholar 

  • Martin, J. M., Grossiord, C., Mogne, T. L., & Igarashi, J. (2000). Transfer films and friction under boundary lubrication. Wear, 245, 107–115.

    Article  CAS  Google Scholar 

  • McKay, G., Blair, H.S., Findon, A. (1986). Sorption of metal ions by chitosan. In: H. Eccles, S. Hunt ŽEds., Immobilization of ions by bio-sorption. Ellis Horwood, Chichester, UK 59–69

  • Monteiro Jr., O. A. C., & Airoldi, C. (1999). Some thermodynamic data on copper–chitin and copper–chitosan biopolymer interactions. Journal of Colloid Interface Science, 212, 212–219.

    Article  CAS  Google Scholar 

  • Naidu, R., Syers, J. K., Tillman, R. W., & Kirkman, J. H. (1990). Effect of liming on phosphate sorption by acid soils. Journal of Soil Science, 41, 165–175.

    Article  CAS  Google Scholar 

  • Ngah, W. S., Kamari, A., & Koay, Y. J. (2004). Equilibrium kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34, 155–161.

    Article  Google Scholar 

  • Ngah, W. S., Wan, T. L. C., & Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chemical Engineering Journal, 143, 62–72.

    Article  CAS  Google Scholar 

  • Ngah, W. S., Wan, T. L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydrate Polymers, 83, 1446–1456.

    Article  Google Scholar 

  • Nriagu, J. (2007). Zinc toxicity in humans. Encyclopedia of environmental health, Elsevier: Michigan, USA, pp.801–807.

  • Onsoyen, E., & Skaugrud, O. (1990). Metal recovery using chitosan. Journal of Chemical Technology, 49, 395–404.

    CAS  Google Scholar 

  • Ozcan, A., Ozcan, A. S., Tunali, S., Akar, T., & Khan, I. (2005). Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of capsicum annum. Journal of Hazardous Materials, 124, 200–208.

    Article  Google Scholar 

  • Popuri, S. R., Vijayaa, Y., Boddu, V. M., & Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 100, 194–199.

    Article  CAS  Google Scholar 

  • Rezaei, R. M., Esfandbod, M., Adhami, E., & Srivastava, P. (2014). Cadmium desorption behavior in selected sub-tropical soils: effects of soil properties. Journal of Geochemical Exploration, 144, 230–236.

    Article  Google Scholar 

  • Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1–27.

    Article  Google Scholar 

  • Rinaudo, M. (2006). Chitin and Chitosan: Properties and Applications. Progress in Polymer Science, 31, 603–632.

  • Rodriguez, J. A., & Kuhn, M. (1995). Co-adsorption of Zn and S on Mo(110): weakening of the Zn & Mo bond and Zn-promoted sulfidation of Mo. Surface Science, 336, 1–12.

    Article  Google Scholar 

  • Rout, G. R., & Das, P. (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie, 23, 3–11.

    Article  Google Scholar 

  • Rudzinski, W., & Plazinski, W. (2009). On the applicability of the pseudo-second order equation to represent the kinetics of adsorption at solid/solution interfaces: a theoretical analysis based on the statistical rate theory. Adsorption, 15, 181.

    Article  CAS  Google Scholar 

  • Ryden, J. C., & Syers, J. K. (1975). Charge relationships of phosphate sorption. Nature, 255, 51–53.

    Article  CAS  Google Scholar 

  • Sapalidis, A.A., Katsaros, F.K., Kanellopoulos, N.K. (2011). PVA/montmorillonite nanocomposites: development and properties. Nanocomposites and polymers with analytical methods. John Cuppoletti (Ed), ISBN 978–953–307-352-1, 404 pages, Publisher: InTech (http://cdn.intechopen.com/pdfs/17185/InTech-Pva_montmorillonite _nanocomposites_development_and_properties.pdf

  • Selim, H. M. (2012). Competitive Sorption and Transport of Trace Elements in Soils and Geological Media.CRC/Taylor and Francis, Boca Raton, FL (425 p).

  • Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10, 37–51.

    Article  CAS  Google Scholar 

  • Shen, J., & Duvnjak, Z. (2005). Adsorption kinetics of cupric and cadmium ions on corncob particles. Process Biochemistry, 40, 3446–3454.

    Article  CAS  Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19, 105–116.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (1986). Kinetics of reaction in pure and mixed systems in soil physical chemistry. Boca Raton: CRC Press.

    Google Scholar 

  • Sparks, D. L. (1989). Kinetics of soil chemical processes. San Diego: Academic Press.

    Google Scholar 

  • Sparks, D. L. (1990). Kinetics of soil chemical processes: an overview. Trans. Int. Congress of Soil Science, 2, 4–9.

    Google Scholar 

  • Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290, 28–38.

    Article  CAS  Google Scholar 

  • Srivastava, P. C., & Srivastava, P. (2008). Integration of soil pH with soil-test values of zinc for prediction of yield response in rice grown in mollisols. Communications in Soil Science and Plant Analysis, 39, 2456–2468.

    Article  CAS  Google Scholar 

  • Srivastava, P. C., Naresh, M., & Srivastava, P. (2008). Appraisal of some soil tests for zinc availability to late-sown wheat grown in mollisols. Communications in Soil Science and Plant Analysis, 39, 440–449.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., Tyagi, R., & Pant, N. (1989). Adsorption of heavy metals on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Research, 23, 1161–1165.

    Article  CAS  Google Scholar 

  • Stathi, P., Papadas, I. T., Tselepidou, A., & Deligiannakis, Y. (2010). Heavy metal uptake by a high cation-exchange capacity montmorillonite: the role of permanent charge sites. Global NEST Journal, 12, 248–255.

    Google Scholar 

  • Trgo, M., Peric, J., & Vukojević, M. N. (2006). A comparative study of ion exchange kinetics in zinc/lead-modified zeolite-clinoptilolite systems. Journal of Hazardous Materials, 136, 938–945.

    Article  CAS  Google Scholar 

  • Varma, A. J., Deshpande, S. V., & Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55, 77–93.

    Article  CAS  Google Scholar 

  • Vijaya, Y., Srinivasa, R. P., Veera, M. B., & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydrate Polymers, 72, 261–271.

    Article  CAS  Google Scholar 

  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.

    Article  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitation Engineering Division of American Society of Civil Engineering, 89, 31–60.

    Google Scholar 

  • White, R.E. (1980). Retention and release of phosphate by soil and soil constituents. In: Soils and Agriculture (P. B. Tinker, Ed.). Critical Reports on Applied Chemistry Volume 2. Soc. Chem. Ind. Oxford. Blackwell Scientific Publications, 71–114

  • Wu, F. C., Tseng, R. L., & Juang, R. X. (2000). Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. Journal of Hazardous Materials, 73, 63–75.

    Article  CAS  Google Scholar 

  • Zhao, K., & Selim, H. M. (2010). Adsorption-desorption kinetics of Zn in soils: influence of phosphate. Soil Science, 175, 145–153.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The senior author is grateful to the Department of Education, Employment and Workplace Relations (DEEWR), Australia, for funding the Endeavor Research Award, and to Central Institute of Mining and Fuel Research, CSIR, Dhanbad India, in support of this award. The authors are grateful to Prof. Nanthi S. Bolan for insights on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimisha Tripathi.

Additional information

Capsule abstract

Pure and modified chitosan beads were studied for equilibration time on Zn and Ni adsorption. Modified beads had higher potential for metal removal as seen with the models tested.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, N., Choppala, G., Singh, R.S. et al. Sorption kinetics of zinc and nickel on modified chitosan. Environ Monit Assess 188, 507 (2016). https://doi.org/10.1007/s10661-016-5499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5499-5

Keywords

Navigation