Skip to main content

Advertisement

Log in

The contribution of cluster and discriminant analysis to the classification of complex aquifer systems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper presents an innovated method for the discrimination of groundwater samples in common groups representing the hydrogeological units from where they have been pumped. This method proved very efficient even in areas with complex hydrogeological regimes. The proposed method requires chemical analyses of water samples only for major ions, meaning that it is applicable to most of cases worldwide. Another benefit of the method is that it gives a further insight of the aquifer hydrogeochemistry as it provides the ions that are responsible for the discrimination of the group. The procedure begins with cluster analysis of the dataset in order to classify the samples in the corresponding hydrogeological unit. The feasibility of the method is proven from the fact that the samples of volcanic origin were separated into two different clusters, namely the lava units and the pyroclastic–ignimbritic aquifer. The second step is the discriminant analysis of the data which provides the functions that distinguish the groups from each other and the most significant variables that define the hydrochemical composition of the aquifer. The whole procedure was highly successful as the 94.7 % of the samples were classified to the correct aquifer system. Finally, the resulted functions can be safely used to categorize samples of either unknown or doubtful origin improving thus the quality and the size of existing hydrochemical databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CA:

Cluster analysis

DA:

Discriminant analysis

PCA:

Principal component analysis

FA:

Factor analysis

CCDA:

Combined cluster and discriminant analysis

CART:

Classification and regression tree

BRT:

Boosted regression tree

RF:

Random forest classification

References

  • Aertsen, W., Kint, V., van Orshoven, J., Özkan, K., & Muys, B. (2010). Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221, 1119–1130.

    Article  Google Scholar 

  • Afifi, A. A., & Clark, V. (1996). Computer-aided multivariate analysis (3rd ed.). London: Chapman & Hall.

    Book  Google Scholar 

  • Ajorlo, M., Abdullah, R. B., Yusoff, M. K., Halim, R. A., Hanif, A. H. M., Willms, W. D., & Ebrahimian, M. (2013). Multivariate statistical techniques for the assessment of seasonal variations in surface water quality of pasture ecosystems. Environmental Monitoring and Assessment, 185, 8649–8658.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (1998). Standard methods for examination of water and wastewater. American Public Health Association Inc, 20th Edition, Washington DC.

  • Arslan, H. (2013). Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environmental Monitoring and Assessment, 185, 2439–2452.

    Article  CAS  Google Scholar 

  • Asante, J., & Kreamer, D. (2015). A new approach to identify recharge areas in the Lower Virgin River Basin and surrounding basins by multivariate statistics. Mathematical Geoscience, 47, 819–842.

    Article  CAS  Google Scholar 

  • Baudron, P., Alonso-Sarría, F., García-Aróstegui, J. L., CánovasGarcía, F., Martínez-Vicente, D., & Moreno-Brotóns, J. (2013). Identifying the origin of groundwater samples in a multi-layer aquifer system with random forest classification. Journal of Hydrology, 499, 303–315.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Brown, C. A. (1998). Applied multivariate statistics in geohydrology and related sciences. New York: Springer.

    Book  Google Scholar 

  • Chatzidimitriadis, E., & Allagianis, I. (1972). Final conclusions of magnesite study in “Aforades” area, Agiasos, Lesvos. Unpublished report, I.G.M.E., Athens (in Greek).

  • Davis, J. C. (1986). Statistics and data analysis in geology. New York: Wiley.

    Google Scholar 

  • Filzmoser, P., Hron, K., & Templ, M. (2012). Discriminant analysis for compositional data and robust parameter estimation. Comp Stat, 27(4), 585–604.

    Article  Google Scholar 

  • Giannoulopoulos, P., & Lappas, I. (2010). Evaluation of water resources of Aegean, Quality measurements and development measures. Unpublished report, I.G.M.E., Athens (in Greek).

  • Hecht, J. (1972). Geological map of Greece, scale 1:50,000, Mytilene-Plomari, Agia Paraskevi, Polychnitos and Eresos sheets. Athens: I.G.M.E.

    Google Scholar 

  • Katsikatsos, G., Mataragas, D., Migiros, G., & Triantafylli, E. (1982). Geological study of Lesvos Island, Unpublished report, I.G.M.E., Athens (in Greek).

  • Kelepertsis, A. E. (1993). Hydrothermal alteration of basic island-arc volcanic rocks north and south of Mytilini Town, Lesvos Island, Greece. Terra Nova, 5(1), 52–60.

    Article  Google Scholar 

  • Kovács, J., Kovács, S., Magyar, N., Tanos, P., Hatvani, I. G., & Anda, A. (2014). Classification into homogeneous groups using combined cluster and discriminant analysis. Environ Model & Soft, 57, 52–59.

    Article  Google Scholar 

  • Lambrakis, N., Antonakos, A., & Panagopoulos, G. (2004). The use of multicomponent statistical analysis in hydrogeological environmental research. Water Research, 38, 1862–1872.

    Article  CAS  Google Scholar 

  • Li, D., Huang, D., Guo, C., & Guo, X. (2015). Multivariate statistical analysis of temporal–spatial variations in water quality of a constructed wetland purification system in a typical park in Beijing, China. Environmental Monitoring and Assessment, 187, 4219. doi:10.1007/s10661-014-4219-2.

    Article  Google Scholar 

  • Lin, G.-F., & Wang, C.-M. (2006). Performing cluster analysis and discrimination analysis of hydrological factors in one step. Advances in Water Resources, 29, 1573–1585.

    Article  Google Scholar 

  • Matiatos, I., Alexopoulos, A., & Godelitsas, A. (2014). Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece). Sci Tot Environ, 476-477, 577–590.

    Article  CAS  Google Scholar 

  • Moment, B., & Zehr, J. (1998). Watershed classification by discriminant analyses of lakewater-chemistry and terrestrial characteristics. Ecological Applications, 8(2), 497–507.

    Article  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. K. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology, 388, 100–111.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. S., Saxena, V. K., & Singh, V. P. (2011). Assessment of seawater impact using major hydrochemical ions: a case study from Sadras, Tamilnadu, India. Environmental Monitoring and Assessment, 177, 315–335.

    Article  CAS  Google Scholar 

  • Muangthong, S., & Shrestha, S. (2015). Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environmental Monitoring and Assessment, 187, 548. doi:10.1007/s10661-015-4774-1.

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188, 44. doi:10.1007/s10661-015-5049-6.

    Article  Google Scholar 

  • Omonona, O. V., Onwuka, O. S., & Okogbue, C. O. (2014). Characterization of groundwater quality in three settlement areas of Enugu metropolis, southeastern Nigeria, using multivariate analysis. Environmental Monitoring and Assessment, 186, 651–664. doi:10.1007/s10661-013-3405-y.

    Article  CAS  Google Scholar 

  • Panagopoulos, G., & Panagiotaras, D. (2011). Understanding the extent of geochemical and hydrochemical processes in coastal karst aquifers through ion chemistry and multivariate statistical analysis. Fres Env Bull, 20(12A), 3270–3285.

    CAS  Google Scholar 

  • Papatheodorou, G., Demopoulou, G., & Lambrakis, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193, 759–776.

    Article  Google Scholar 

  • Papatheodorou, G., Lambrakis, N., & Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of coastal aquifer: an example from Crete, Greece. Hydrological Processes, 21(11), 1482–1495.

    Article  CAS  Google Scholar 

  • Pati, S., Dash, M. K., Mukherjee, C. K., Dash, B., & Pokhrel, S. (2014). Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India. Environmental Monitoring and Assessment, 186, 6385–6402.

    Article  CAS  Google Scholar 

  • Pe-Piper, G., & Piper, D. J. W. (1992). Geochemical variation with time in the Cenozoic high-K volcanic rocks of the island of Lesbos Greece: significance for shoshonite petrogenesis. J Volcanol Geothermal Res, 53, 371–387.

    Article  CAS  Google Scholar 

  • Petalas, C., & Anagnostopoulos, K. (2006). Application of stepwise discriminant analysis for the identification of salinity sources of groundwater. Water Resources Management, 20, 681–700.

    Article  Google Scholar 

  • Phung, D., Huang, C., Rutherford, S., Dwirahmadi, F., Chu, C., Wang, X., Nguyen, M., Nguyen, N. H., Do, C. M., Nguyen, T. H., & Dinh, T. A. D. (2015). Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam. Environmental Monitoring and Assessment, 187, 229. doi:10.1007/s10661-015-4474-x.

    Article  Google Scholar 

  • Qian, J., Wang, L., Ma, L., Lu, Y., Zhao, W., & Zhang, Y. (2016). Multivariate statistical analysis of water chemistry in evaluating groundwater geochemical evolution and aquifer connectivity near a large coal mine, Anhui, China. Environmental Earth Sciences, 75, 747. doi:10.1007/s12665-016-5541-5.

    Article  Google Scholar 

  • Rao, A. R., & Srinivas, V. V. (2006). Regionalization of watersheds by hybrid-cluster analysis. Journal of Hydrology, 318, 37–56.

    Article  Google Scholar 

  • Sun, L. H. (2014). Statistical analysis of hydrochemistry of groundwater and its implications for water source identification: a case study. Arabian Journal of Geosciences, 7, 3417–3425.

    Article  Google Scholar 

  • Tanos, P., Kovács, J., Kovács, S., Anda, A., & Hatvani, I. G. (2015). Optimization of the monitoring network on the River Tisza (Central Europe, Hungary) using combined cluster and discriminant analysis, taking seasonality into account. Environmental Monitoring and Assessment, 187, 575. doi:10.1007/s10661-015-4777-y.

    Article  Google Scholar 

  • Yang, Y.-H., Zhou, F., Guo, H.-C., Sheng, H., Liu, H., Dao, X., & He, C.-J. (2010). Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environmental Monitoring and Assessment, 170, 407–416. doi:10.1007/s10661-009-1242-9.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, Q., Liu, Y., Wu, J., & Yu, M. (2011). Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. Environmental Monitoring and Assessment, 173, 17–27. doi:10.1007/s10661-010-1366-y.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Panagopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panagopoulos, G.P., Angelopoulou, D., Tzirtzilakis, E.E. et al. The contribution of cluster and discriminant analysis to the classification of complex aquifer systems. Environ Monit Assess 188, 591 (2016). https://doi.org/10.1007/s10661-016-5590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5590-y

Keywords

Navigation