Skip to main content
Log in

Contaminants of emerging concern: a review of new approach in AOP technologies

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The presence of contaminants of emerging concern (CECs) such as pharmaceuticals and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), flame retardants (FRs), pesticides, and artificial sweeteners (ASWs) in the aquatic environments remains a major challenge to the environment and human health. In this review, the classification and occurrence of emerging contaminants in aquatic environments were discussed in detail. It is well documented that CECs are susceptible to poor removal during the conventional wastewater treatment plants, which introduce them back to the environment ranging from nanogram per liter (e.g., carbamazepine) up to milligram per liter (e.g., acesulfame) concentration level. Meanwhile, a deep insight into the application of advanced oxidation processes (AOPs) on mitigation of the CECs from aquatic environment was presented. In this regard, the utilization of various treatment technologies based on AOPs including ozonation, Fenton processes, sonochemical, and TiO2 heterogeneous photocatalysis was reviewed. Additionally, some innovations (e.g., visible light heterogeneous photocatalysis, electro-Fenton) concerning the AOPs and the combined utilization of AOPs (e.g., sono-Fenton) were documented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APIs:

Active pharmaceutical ingredients

AOPs:

Advanced oxidation processes

ASWs:

Artificial sweeteners

BPA:

Bisphenol A

BDD:

Boron-doped diamond

CECs:

Contaminants of emerging concern

DOC:

Dissolved organic carbon

DW:

Drinking water

DWTP:

Drinking water treatment plant

ESI:

Electro-spray ionization

EDCs:

Endocrine-disrupting compounds

FRs:

Flame retardants

GC-MS:

Gas chromatography–mass spectrometry

GW:

Groundwater

HPLC:

High-performance liquid chromatography

·OH:

Hydroxyl radical

IC:

Ion Chromatography

LOQ:

Limit of quantification

LC-MS/MS:

Liquid chromatography–tandem mass spectrometry

DEET:

N,N-diethyl-m-toluamide

MS:

Mass spectrometer

MW:

Microwave

PhACs:

Pharmaceutically active compounds

PPCPs:

Pharmaceuticals and personal care products

PBDEs:

Polybrominated diphenyl ethers

RRLC-MS/MS:

Rapid resolution liquid chromatography–tandem mass spectrometry

SPE:

Solid-phase extraction

SPE-LC-MS/MS:

Solid-phase extraction–liquid chromatography–tandem mass spectrometry

TOC:

Total organic carbon

Na6TPP:

Tetrapolyphosphate

TrOCs:

Trace organic contaminants

TPs:

Transformation products

TCC:

Triclocarban

TCS:

Triclosan

TBEP:

Tris(2-butoxyethyl)phosphate

TCEP:

Tris(2-chloroethyl)-phosphate

WWTPs:

Wastewater treatment plants

References

  • Abdessalem, A. K., Bellakhal, N., Oturan, N., Dachraoui, M., & Oturan, M. A. (2010). Treatment of a mixture of three pesticides by photo- and electro-Fenton processes. Desalination, 250(1), 450–455. doi:10.1016/j.desal.2009.09.072.

    Article  CAS  Google Scholar 

  • Ammar, H. B. (2016). Sono-Fenton process for metronidazole degradation in aqueous solution: effect of acoustic cavitation and peroxydisulfate anion. Ultrasonics Sonochemistry, 33, 164–169. doi:10.1016/j.ultsonch.2016.04.035.

    Article  CAS  Google Scholar 

  • Ananpattarachai, J., & Kajitvichyanukul, P. (2015). Photocatalytic degradation of p,p′-DDT under UV and visible light using interstitial N-doped TiO2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 50(4), 247–260. doi:10.1080/03601234.2015.999592.

    Article  CAS  Google Scholar 

  • Anumol, T., Vijayanandan, A., Park, M., Philip, L., & Snyder, S. A. (2016). Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India. Environment International, 92, 33–42.

    Article  CAS  Google Scholar 

  • Aronson, D., Weeks, J., Meylan, B., Guiney, P. D., & Howard, P. H. (2012). Environmental release, environmental concentrations, and ecological risk of N, N‐diethyl‐m‐toluamide (DEET). Integrated Environmental Assessment and Management, 8(1), 135–166.

    Article  CAS  Google Scholar 

  • Asghar, A., Abdul Raman, A. A., & Wan Daud, W. M. A. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production, 87, 826–838. doi:10.1016/j.jclepro.2014.09.010.

    Article  CAS  Google Scholar 

  • Aydin, E., & Talinli, I. (2013). Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. Chemosphere, 90(6), 2004–2012. doi:10.1016/j.chemosphere.2012.10.074.

    Article  CAS  Google Scholar 

  • Babuponnusami, A., & Muthukumar, K. (2012). Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chemical Engineering Journal, 183, 1–9. doi:10.1016/j.cej.2011.12.010.

    Article  CAS  Google Scholar 

  • Bagal, M. V., & Gogate, P. R. (2014). Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review. Ultrasonics Sonochemistry, 21(1), 1–14.

    Article  CAS  Google Scholar 

  • Bai, Z., Yang, Q., & Wang, J. (2016). Catalytic ozonation of sulfamethazine antibiotics using Ce0.1Fe0.9OOH: catalyst preparation and performance. Chemosphere, 161, 174–180. doi:10.1016/j.chemosphere.2016.07.012.

    Article  CAS  Google Scholar 

  • Baquero, F., Martínez, J.-L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260–265. doi:10.1016/j.copbio.2008.05.006.

    Article  CAS  Google Scholar 

  • Bergman, Å., Rydén, A., Law, R. J., de Boer, J., Covaci, A., Alaee, M., et al. (2012). A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals. Environment International, 49, 57–82.

    Article  CAS  Google Scholar 

  • Bernabeu, A., Vercher, R. F., Santos-Juanes, L., Simón, P. J., Lardín, C., Martínez, M. A., et al. (2011). Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catalysis Today, 161(1), 235–240. doi:10.1016/j.cattod.2010.09.025.

    Article  CAS  Google Scholar 

  • Bing, J., Hu, C., Nie, Y., Yang, M., & Qu, J. (2015). Mechanism of catalytic ozonation in Fe2O3/Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environmental Science & Technology, 49(3), 1690–1697. doi:10.1021/es503729h.

    Article  CAS  Google Scholar 

  • Blair, B. D., Crago, J. P., Hedman, C. J., & Klaper, R. D. (2013). Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere, 93(9), 2116–2123. doi:10.1016/j.chemosphere.2013.07.057.

    Article  CAS  Google Scholar 

  • Borowska, E., Bourgin, M., Hollender, J., Kienle, C., McArdell, C. S., & von Gunten, U. (2016). Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: kinetics and formation of transformation products. Water Research, 94, 350–362. doi:10.1016/j.watres.2016.02.020.

    Article  CAS  Google Scholar 

  • Bouafıa-Cherguı, S., Zemmourı, H., Chabanı, M., & Bensmaılı, A. (2015). TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction. Desalination and Water Treatment, 1–8.

  • Boutemedjet, S., Hamdaoui, O., Merouani, S., & Pétrier, C. (2016). Sonochemical degradation of endocrine disruptor propylparaben in pure water, natural water, and seawater. Desalination and Water Treatment, 1–11.

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109(12), 6570–6631. doi:10.1021/cr900136g.

    Article  CAS  Google Scholar 

  • Bueno, M. J. M., Gomez, M. J., Herrera, S., Hernando, M. D., Agüera, A., & Fernández-Alba, A. R. (2012). Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environmental Pollution, 164, 267–273. doi:10.1016/j.envpol.2012.01.038.

    Article  CAS  Google Scholar 

  • Buerge, I. J., Buser, H.-R., Kahle, M., Müller, M. D., & Poiger, T. (2009). Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Environmental Science & Technology, 43(12), 4381–4385. doi:10.1021/es900126x.

    Article  CAS  Google Scholar 

  • Campo, J., Masiá, A., Blasco, C., & Picó, Y. (2013). Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. Journal of Hazardous Materials, 263(Part 1), 146–157. doi:10.1016/j.jhazmat.2013.09.061.

    Article  CAS  Google Scholar 

  • Casas, M. E., & Bester, K. (2015). Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)? Science of the Total Environment, 506, 315–322.

    Article  CAS  Google Scholar 

  • Cédat, B., de Brauer, C., Métivier, H., Dumont, N., & Tutundjan, R. (2016). Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale. Water Research, 100, 357–366. doi:10.1016/j.watres.2016.05.040.

    Article  CAS  Google Scholar 

  • Chakma, S., & Moholkar, V. S. (2014). Investigations in synergism of hybrid advanced oxidation processes with combinations of sonolysis+ Fenton process+ UV for degradation of bisphenol A. Industrial & Engineering Chemistry Research, 53(16), 6855–6865.

    Article  CAS  Google Scholar 

  • Chen, C., Ma, W., & Zhao, J. (2010). Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 39(11), 4206–4219.

    Article  CAS  Google Scholar 

  • Costa, L. G., & Giordano, G. (2007). Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 28(6), 1047–1067. doi:10.1016/j.neuro.2007.08.007.

    Article  CAS  Google Scholar 

  • Cotman, M., Erjavec, B., Djinović, P., & Pintar, A. (2016). Catalyst support materials for prominent mineralization of bisphenol A in catalytic ozonation process. Environmental Science and Pollution Research, 1–11.

  • Cruz, M., Gomez, C., Duran-Valle, C. J., Pastrana-Martínez, L. M., Faria, J. L., Silva, A. M. T., et al. (2015). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. [Article in Press]. Applied Surface Science, doi:10.1016/j.apsusc.2015.09.268.

  • Cuerda-Correa, E. M., Domínguez, J. R., Muñoz-Peña, M. J., & González, T. (2016). Degradation of parabens in different aqueous matrices by several O3-derived advanced oxidation processes. Industrial & Engineering Chemistry Research, 55(18), 5161–5172.

    Article  CAS  Google Scholar 

  • De la Cruz, N., Esquius, L., Grandjean, D., Magnet, A., Tungler, A., de Alencastro, L. F., et al. (2013). Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Research, 47(15), 5836–5845. doi:10.1016/j.watres.2013.07.005.

    Article  CAS  Google Scholar 

  • Dindarsafa, M., Khataee, A., Kaymak, B., Vahid, B., Karimi, A., & Rahmani, A. (2017). Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye. Ultrasonics Sonochemistry, 34, 389–399. doi:10.1016/j.ultsonch.2016.06.016.

    Article  CAS  Google Scholar 

  • Dong, F., Xiong, T., Sun, Y., Zhao, Z., Zhou, Y., Feng, X., et al. (2014). A semimetal bismuth element as a direct plasmonic photocatalyst. Chemical Communications, 50(72), 10386–10389.

    Article  CAS  Google Scholar 

  • Dsikowitzky, L., Dwiyitno, Heruwati, E., Ariyani, F., Irianto, H. E., & Schwarzbauer, J. (2014). Exceptionally high concentrations of the insect repellent N,N-diethyl-m-toluamide (DEET) in surface waters from Jakarta, Indonesia. Environmental Chemistry Letters, 12(3), 407–411. doi:10.1007/s10311-014-0462-6.

    Article  CAS  Google Scholar 

  • Du, D., Shi, W., Wang, L., & Zhang, J. (2017). Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline. Applied Catalysis B: Environmental, 200, 484–492. doi:10.1016/j.apcatb.2016.07.043.

    Article  CAS  Google Scholar 

  • Duo, F., Wang, Y., Fan, C., Mao, X., Zhang, X., Wang, Y., et al. (2015). Low temperature one-step synthesis of rutile TiO 2/BiOCl composites with enhanced photocatalytic activity. Materials Characterization, 99, 8–16.

    Article  CAS  Google Scholar 

  • Durán, A., Monteagudo, J. M., Sanmartín, I., & García-Díaz, A. (2013). Sonophotocatalytic mineralization of antipyrine in aqueous solution. Applied Catalysis B: Environmental, 138–139, 318–325. doi:10.1016/j.apcatb.2013.03.013.

    Article  CAS  Google Scholar 

  • Esplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Research, 36(4), 1034–1042. doi:10.1016/S0043-1354(01)00301-3.

    Article  CAS  Google Scholar 

  • Esteban, S., Gorga, M., Petrovic, M., González-Alonso, S., Barceló, D., & Valcárcel, Y. (2014). Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. Science of the Total Environment, 466–467, 939–951. doi:10.1016/j.scitotenv.2013.07.101.

    Article  CAS  Google Scholar 

  • Eswar, N. K., Ramamurthy, P. C., & Madras, G. (2016). Novel synergistic photocatalytic degradation of antibiotics and bacteria using V–N doped TiO 2 under visible light: the state of nitrogen in V-doped TiO 2. New Journal of Chemistry, 40(4), 3464–3475.

    Article  CAS  Google Scholar 

  • Fawell, J., & Ong, C. N. (2012). Emerging contaminants and the implications for drinking water. International Journal of Water Resources Development, 28(2), 247–263.

    Article  Google Scholar 

  • Fedorova, G., Grabic, R., Nyhlen, J., Järhult, J. D., & Söderström, H. (2016). Fate of three anti-influenza drugs during ozonation of wastewater effluents–degradation and formation of transformation products. Chemosphere, 150, 723–730.

    Article  CAS  Google Scholar 

  • Ferro, G., Guarino, F., Castiglione, S., & Rizzo, L. (2016). Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Science of the Total Environment, 560–561, 29–35. doi:10.1016/j.scitotenv.2016.04.047.

    Article  CAS  Google Scholar 

  • Flores, C., Ventura, F., Martin-Alonso, J., & Caixach, J. (2013). Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Science of the Total Environment, 461–462, 618–626. doi:10.1016/j.scitotenv.2013.05.026.

    Article  CAS  Google Scholar 

  • Gadipelly, C., Pérez-González, A., Yadav, G. D., Ortiz, I., Ibáñez, R., Rathod, V. K., et al. (2014). Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research, 53(29), 11571–11592. doi:10.1021/ie501210j.

    Article  CAS  Google Scholar 

  • Ghafoori, S., Mowla, A., Jahani, R., Mehrvar, M., & Chan, P. K. (2015). Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling. Journal of Environmental Management, 150, 128–137. doi:10.1016/j.jenvman.2014.11.011.

    Article  CAS  Google Scholar 

  • Giraldo, A. L., Erazo-Erazo, E. D., Flórez-Acosta, O. A., Serna-Galvis, E. A., & Torres-Palma, R. A. (2015). Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components. Chemical Engineering Journal, 279, 103–114. doi:10.1016/j.cej.2015.04.140.

    Article  CAS  Google Scholar 

  • Giri, A. S., & Golder, A. K. (2015). Decomposition of drug mixture in Fenton and photo-Fenton processes: comparison to singly treatment, evolution of inorganic ions and toxicity assay. Chemosphere, 127, 254–261.

    Article  CAS  Google Scholar 

  • Giulivo, M., Lopez de Alda, M., Capri, E., & Barceló, D. (2016). Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environmental Research, 151, 251–264. doi:10.1016/j.envres.2016.07.011.

    Article  CAS  Google Scholar 

  • Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D. (2015). Environmental implications of hydroxyl radicals (•OH). Chemical Reviews, 115(24), 13051–13092. doi:10.1021/cr500310b.

    Article  CAS  Google Scholar 

  • Gmurek, M., Olak-Kucharczyk, M., & Ledakowicz, S. (2016). Photochemical decomposition of endocrine disrupting compounds—a review. Chemical Engineering Journal. doi:10.1016/j.cej.2016.05.014.

  • Gramatica, P., Cassani, S., & Sangion, A. (2016). Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives’ design. Green Chemistry.

  • Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338–344.

    Article  Google Scholar 

  • Gurkan, Y. Y., Kasapbasi, E., & Cinar, Z. (2013). Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: characterization and DFT modeling of the surface. Chemical Engineering Journal, 214, 34–44. doi:10.1016/j.cej.2012.10.025.

    Article  CAS  Google Scholar 

  • Han, C., Xia, B., Chen, X., Shen, J., Miao, Q., & Shen, Y. (2016). Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS. Food Chemistry, 194, 1199–1207. doi:10.1016/j.foodchem.2015.08.093.

    Article  CAS  Google Scholar 

  • Hocquet, D., Muller, A., & Bertrand, X. (2016). What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. Journal of Hospital Infection, 93(4), 395–402. doi:10.1016/j.jhin.2016.01.010.

    Article  CAS  Google Scholar 

  • Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices—a review. Journal of Environmental Management, 92(10), 2304–2347.

    Article  CAS  Google Scholar 

  • Houtman, C. J. (2010). Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. Journal of Integrative Environmental Sciences, 7(4), 271–295.

    Article  Google Scholar 

  • Ioannidou, E., Frontistis, Z., Antonopoulou, M., Venieri, D., Konstantinou, I., Kondarides, D. I., et al. (2017). Solar photocatalytic degradation of sulfamethoxazole over tungsten-modified TiO 2. Chemical Engineering Journal, 318, 143–152.

    Article  CAS  Google Scholar 

  • James-Todd, T. M., Chiu, Y.-H., & Zota, A. R. (2016). Racial/ethnic disparities in environmental endocrine disrupting chemicals and women’s reproductive health outcomes: epidemiological examples across the life course. Current Epidemiology Reports, 3(2), 161–180.

    Article  Google Scholar 

  • Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., et al. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165–1176. doi:10.1016/j.watres.2010.11.010.

    Article  CAS  Google Scholar 

  • Jiang, J.-J., Lee, C.-L., Brimblecombe, P., Vydrova, L., & Fang, M.-D. (2016). Source contributions and mass loadings for chemicals of emerging concern: chemometric application of pharmaco-signature in different aquatic systems. Environmental Pollution, 208, 79–86.

    Article  CAS  Google Scholar 

  • Joseph, C. G., Li Puma, G., Bono, A., & Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 16(5), 583–589. doi:10.1016/j.ultsonch.2009.02.002.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Canonica, S., & von Gunten, U. (2011). Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Research, 45(13), 3811–3822. doi:10.1016/j.watres.2011.04.038.

    Article  CAS  Google Scholar 

  • Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2010). Degradation of fifteen emerging contaminants at μg L−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–554. doi:10.1016/j.watres.2009.09.059.

    Article  CAS  Google Scholar 

  • Köck-Schulmeyer, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458–460, 466–476. doi:10.1016/j.scitotenv.2013.04.010.

    Article  CAS  Google Scholar 

  • Kovacic, M., Salaeh, S., Kusic, H., Suligoj, A., Kete, M., Fanetti, M., et al. (2016). Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environmental Science and Pollution Research, 1–13.

  • Kuroda, K., Murakami, M., Oguma, K., Muramatsu, Y., Takada, H., & Takizawa, S. (2012). Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environmental Science & Technology, 46(3), 1455–1464.

    Article  CAS  Google Scholar 

  • Lange, F. T., Scheurer, M., & Brauch, H.-J. (2012). Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review. Analytical and Bioanalytical Chemistry, 403(9), 2503–2518. doi:10.1007/s00216-012-5892-z.

    Article  CAS  Google Scholar 

  • Lee, Y., Gerrity, D., Lee, M., Gamage, S., Pisarenko, A., Trenholm, R. A., et al. (2016). Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: prediction of abatement efficiency, energy consumption, and byproduct formation. Environmental Science & Technology. doi:10.1021/acs.est.5b04904.

  • Lee, Y., & von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects. Environmental Science: Water Research & Technology, 2(3), 421–442. doi:10.1039/C6EW00025H.

    CAS  Google Scholar 

  • Li, H., Liu, J., Qian, J., Li, Q., & Yang, J. (2014a). Preparation of bi-doped TiO2 nanoparticles and their visible light photocatalytic performance. Chinese Journal of Catalysis, 35(9), 1578–1589. doi:10.1016/S1872-2067(14)60124-8.

    Article  CAS  Google Scholar 

  • Li, J., Yu, N., Zhang, B., Jin, L., Li, M., Hu, M., et al. (2014b). Occurrence of organophosphate flame retardants in drinking water from China. Water Research, 54, 53–61. doi:10.1016/j.watres.2014.01.031.

    Article  CAS  Google Scholar 

  • Li, K., Yediler, A., Yang, M., Schulte-Hostede, S., & Wong, M. H. (2008). Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere, 72(3), 473–478. doi:10.1016/j.chemosphere.2008.02.008.

    Article  CAS  Google Scholar 

  • Li, S., Zhang, G., Wang, P., Zheng, H., & Zheng, Y. (2016). Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chemical Engineering Journal, 294, 371–379. doi:10.1016/j.cej.2016.03.006.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, J., Liu, B., Dang, L., Yao, H., & Li, Z. (2011). BiOI-sensitized TiO 2 in phenol degradation: a novel efficient semiconductor sensitizer. Chemical Physics Letters, 508(1), 102–106.

    Article  CAS  Google Scholar 

  • Lin, H., Wu, J., Oturan, N., Zhang, H., & Oturan, M. A. (2016). Degradation of artificial sweetener saccharin in aqueous medium by electrochemically generated hydroxyl radicals. Environmental Science and Pollution Research, 23(5), 4442–4453.

    Article  CAS  Google Scholar 

  • Liu, J.-N., Chen, Z., Wu, Q.-Y., Li, A., Hu, H.-Y., & Yang, C. (2016). Ozone/graphene oxide catalytic oxidation: a novel method to degrade emerging organic contaminant N, N-diethyl-m-toluamide (DEET). Scientific Reports, 6, 31405.

    Article  CAS  Google Scholar 

  • Liu, Z., Xu, X., Fang, J., Zhu, X., Chu, J., & Li, B. (2012). Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Applied Surface Science, 258(8), 3771–3778. doi:10.1016/j.apsusc.2011.12.025.

    Article  CAS  Google Scholar 

  • Loaiza-Ambuludi, S., Panizza, M., Oturan, N., & Oturan, M. A. (2014). Removal of the anti-inflammatory drug ibuprofen from water using homogeneous photocatalysis. Catalysis Today, 224, 29–33. doi:10.1016/j.cattod.2013.12.018.

    Article  CAS  Google Scholar 

  • Loos, R., Carvalho, R., António, D. C., Comero, S., Locoro, G., Tavazzi, S., et al. (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 47(17), 6475–6487. doi:10.1016/j.watres.2013.08.024.

    Article  CAS  Google Scholar 

  • Loos, R., Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S., & Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environmental Pollution, 157(2), 561–568. doi:10.1016/j.envpol.2008.09.020.

    Article  CAS  Google Scholar 

  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., et al. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473, 619–641.

    Article  CAS  Google Scholar 

  • Lutterbeck, C. A., Machado, Ê. L., & Kümmerer, K. (2015). Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H 2 O 2, UV/Fe 2+/H 2 O 2 and UV/TiO 2 processes. Chemosphere, 120, 538–546.

    Article  CAS  Google Scholar 

  • Lyu, L., Zhang, L., & Hu, C. (2015). Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres. Chemical Engineering Journal, 274, 298–306. doi:10.1016/j.cej.2015.03.137.

    Article  CAS  Google Scholar 

  • Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003. doi:10.1016/j.ultsonch.2009.09.005.

    Article  CAS  Google Scholar 

  • Maicu, M., Hidalgo, M. C., Colón, G., & Navío, J. A. (2011). Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. Journal of Photochemistry and Photobiology A: Chemistry, 217(2–3), 275–283. doi:10.1016/j.jphotochem.2010.10.020.

    Article  CAS  Google Scholar 

  • Maletz, S., Floehr, T., Beier, S., Klümper, C., Brouwer, A., Behnisch, P., et al. (2013). In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents. Water Research, 47(4), 1545–1557.

    Article  CAS  Google Scholar 

  • Martins, R. C., & Quinta-Ferreira, R. M. (2009). Catalytic ozonation of phenolic acids over a Mn–Ce–O catalyst. Applied Catalysis B: Environmental, 90(1), 268–277.

    Article  CAS  Google Scholar 

  • Maruya, K. A., Dodder, N. G., Sengupta, A., Smith, D. J., Lyons, J. M., Heil, A. T., et al. (2016). Multi‐media screening of contaminants of emerging concern (CECs) in coastal urban watersheds in Southern California (USA). Environmental Toxicology and Chemistry.

  • Maruya, K. A., Schlenk, D., Anderson, P. D., Denslow, N. D., Drewes, J. E., Olivieri, A. W., et al. (2014). An adaptive, comprehensive monitoring strategy for chemicals of emerging concern (CECs) in California's aquatic ecosystems. Integrated Environmental Assessment and Management, 10(1), 69–77.

    Article  CAS  Google Scholar 

  • Mekonen, S., Argaw, R., Simanesew, A., Houbraken, M., Senaeve, D., Ambelu, A., et al. (2016). Pesticide residues in drinking water and associated risk to consumers in Ethiopia. Chemosphere, 162, 252–260. doi:10.1016/j.chemosphere.2016.07.096.

    Article  CAS  Google Scholar 

  • Méndez-Medrano, M. G., Kowalska, E., Lehoux, A., Herissan, A., Ohtani, B., Bahena, D., et al. (2016). Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. The Journal of Physical Chemistry C, 120(9), 5143–5154. doi:10.1021/acs.jpcc.5b10703.

    Article  CAS  Google Scholar 

  • Merel, S., Anumol, T., Park, M., & Snyder, S. A. (2015). Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water. Journal of Hazardous Materials, 282, 75–85. doi:10.1016/j.jhazmat.2014.09.008.

    Article  CAS  Google Scholar 

  • Mestankova, H., Schirmer, K., Escher, B. I., von Gunten, U., & Canonica, S. (2012). Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes. Environmental Pollution, 161, 30–35. doi:10.1016/j.envpol.2011.09.018.

    Article  CAS  Google Scholar 

  • Miralles-Cuevas, S., Oller, I., Agüera, A., Llorca, M., Pérez, J. S., & Malato, S. (2016). Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: acute and chronic toxicity assessment. Journal of Hazardous Materials.

  • Miranda-García, N., Maldonado, M. I., Coronado, J., & Malato, S. (2010). Degradation study of 15 emerging contaminants at low concentration by immobilized TiO 2 in a pilot plant. Catalysis Today, 151(1), 107–113.

    Article  CAS  Google Scholar 

  • Miranda-García, N., Suárez, S., Sánchez, B., Coronado, J. M., Malato, S., & Maldonado, M. I. (2011). Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Applied Catalysis B: Environmental, 103(3–4), 294–301. doi:10.1016/j.apcatb.2011.01.030.

    Article  CAS  Google Scholar 

  • Mirzaei, A., Chen, Z., Haghighat, F., & Yerushalmi, L. (2016). Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustainable Cities and Society.

  • Molins-Delgado, D., Díaz-Cruz, M. S., & Barceló, D. (2016). Ecological risk assessment associated to the removal of endocrine-disrupting parabens and benzophenone-4 in wastewater treatment. Journal of Hazardous Materials, 310, 143–151.

    Article  CAS  Google Scholar 

  • Mousset, E., Frunzo, L., Esposito, G., Van Hullebusch, E. D., Oturan, N., & Oturan, M. A. (2016). A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study. Applied Catalysis B: Environmental, 180, 189–198.

    Article  CAS  Google Scholar 

  • Muhamad, M. S., Salim, M. R., Lau, W. J., & Yusop, Z. (2016). A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environmental Science and Pollution Research, 23(12), 11549–11567. doi:10.1007/s11356-016-6357-2.

    Article  CAS  Google Scholar 

  • Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45(2), 681–693. doi:10.1016/j.watres.2010.08.033.

    Article  CAS  Google Scholar 

  • Muñoz, I., Rieradevall, J., Torrades, F., Peral, J., & Domènech, X. (2005). Environmental assessment of different solar driven advanced oxidation processes. Solar Energy, 79(4), 369–375. doi:10.1016/j.solener.2005.02.014.

    Article  CAS  Google Scholar 

  • Murcia‐López, S., Hidalgo, M. C., & Navío, J. A. (2013). Degradation of rhodamine B/phenol mixtures in water by sun‐like excitation of a Bi2WO6–TiO2 photocatalyst. Photochemistry and Photobiology, 89(4), 832–840.

    Article  CAS  Google Scholar 

  • Murray, K. E., Thomas, S. M., & Bodour, A. A. (2010). Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environmental Pollution, 158(12), 3462–3471.

    Article  CAS  Google Scholar 

  • Naddeo, V., Landi, M., Scannapieco, D., & Belgiorno, V. (2013). Sonochemical degradation of twenty-three emerging contaminants in urban wastewater. Desalination and Water Treatment, 51(34–36), 6601–6608.

    Article  CAS  Google Scholar 

  • Oh, W.-D., Dong, Z., & Lim, T.-T. (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Applied Catalysis B: Environmental, 194, 169–201.

    Article  CAS  Google Scholar 

  • Oturan, M. A., & Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641.

    Article  CAS  Google Scholar 

  • Padhye, L. P., Yao, H., Kung'u, F. T., & Huang, C.-H. (2014). Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 51, 266–276.

    Article  CAS  Google Scholar 

  • Pan, X., & Xu, Y.-J. (2013). Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. The Journal of Physical Chemistry C, 117(35), 17996–18005. doi:10.1021/jp4064802.

    Article  CAS  Google Scholar 

  • Pan, X., Yang, M.-Q., Fu, X., Zhang, N., & Xu, Y.-J. (2013). Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale, 5(9), 3601–3614. doi:10.1039/C3NR00476G.

    Article  CAS  Google Scholar 

  • Park, H., Park, Y., Kim, W., & Choi, W. (2013). Surface modification of TiO 2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 1–20.

    Article  CAS  Google Scholar 

  • Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., & Wang, Z. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Science of the Total Environment, 397(1–3), 158–166. doi:10.1016/j.scitotenv.2008.02.059.

    Article  CAS  Google Scholar 

  • Pereira, M., Oliveira, L., & Murad, E. (2012). Iron oxide catalysts: Fenton and Fentonlike reactions—a review. Clay Minerals, 47(3), 285–302.

    Article  CAS  Google Scholar 

  • Petala, A., Frontistis, Z., Antonopoulou, M., Konstantinou, I., Kondarides, D. I., & Mantzavinos, D. (2015). Kinetics of ethyl paraben degradation by simulated solar radiation in the presence of N-doped TiO2 catalysts. Water Research, 81, 157–166. doi:10.1016/j.watres.2015.05.056.

    Article  CAS  Google Scholar 

  • Pisarenko, A. N., Marti, E. J., Gerrity, D., Peller, J. R., & Dickenson, E. R. V. (2015). Effects of molecular ozone and hydroxyl radical on formation of N-nitrosamines and perfluoroalkyl acids during ozonation of treated wastewaters. Environmental Science: Water Research & Technology, 1(5), 668–678. doi:10.1039/C5EW00046G.

    CAS  Google Scholar 

  • Prasse, C., Wagner, M., Schulz, R., & Ternes, T. A. (2012). Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. Environmental Science & Technology, 46(4), 2169–2178. doi:10.1021/es203712z.

    Article  CAS  Google Scholar 

  • Prieto-Rodriguez, L., Miralles-Cuevas, S., Oller, I., Agüera, A., Puma, G. L., & Malato, S. (2012). Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO 2 concentrations. Journal of Hazardous Materials, 211, 131–137.

    Article  CAS  Google Scholar 

  • Prieto-Rodríguez, L., Spasiano, D., Oller, I., Fernandez-Calderero, I., Agüera, A., & Malato, S. (2013). Solar photo-Fenton optimization for the treatment of MWTP effluents containing emerging contaminants. Catalysis Today, 209, 188–194.

    Article  CAS  Google Scholar 

  • Pruden, A. (2014). Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environmental Science & Technology, 48(1), 5–14. doi:10.1021/es403883p.

    Article  CAS  Google Scholar 

  • Pycke, B. F. G., Roll, I. B., Brownawell, B. J., Kinney, C. A., Furlong, E. T., Kolpin, D. W., et al. (2014). Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States. Environmental Science & Technology, 48(14), 7881–7890. doi:10.1021/es5006362.

    Article  CAS  Google Scholar 

  • Rayaroth, M. P., Aravind, U. K., & Aravindakumar, C. T. (2016). Ultrasound based AOP for emerging pollutants: from degradation to mechanism. Environmental Science and Pollution Research, 1-9.

  • Ribeiro, R. S., Silva, A. M. T., Figueiredo, J. L., Faria, J. L., & Gomes, H. T. (2016). Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Applied Catalysis B: Environmental, 187, 428–460. doi:10.1016/j.apcatb.2016.01.033.

    Article  CAS  Google Scholar 

  • Richardson, S. D. (2011). Environmental mass spectrometry: emerging contaminants and current issues. Analytical Chemistry, 84(2), 747–778.

    Article  CAS  Google Scholar 

  • Richardson, S. D., & Kimura, S. Y. (2016). Water analysis: emerging contaminants and current issues. Analytical Chemistry, 88(1), 546–582. doi:10.1021/acs.analchem.5b04493.

    Article  CAS  Google Scholar 

  • Roberts, J., Kumar, A., Du, J., Hepplewhite, C., Ellis, D. J., Christy, A. G., et al. (2016). Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of the Total Environment, 541, 1625–1637.

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., et al. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234–242. doi:10.1016/j.watres.2014.11.021.

    Article  CAS  Google Scholar 

  • Romão, J., & Mul, G. (2016). Substrate specificity in photocatalytic degradation of mixtures of organic contaminants in water. ACS Catalysis, 6(2), 1254–1262. doi:10.1021/acscatal.5b02015.

    Article  CAS  Google Scholar 

  • Samaras, V. G., Stasinakis, A. S., Mamais, D., Thomaidis, N. S., & Lekkas, T. D. (2013). Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. Journal of Hazardous Materials, 244–245, 259–267, doi:10.1016/j.jhazmat.2012.11.039.

  • Sathishkumar, P., Mangalaraja, R. V., & Anandan, S. (2016). Review on the recent improvements in sonochemical and combined sonochemical oxidation processes—a powerful tool for destruction of environmental contaminants. Renewable and Sustainable Energy Reviews, 55, 426–454.

    Article  CAS  Google Scholar 

  • Schenone, A. V., Conte, L. O., Botta, M. A., & Alfano, O. M. (2015). Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM). Journal of Environmental Management, 155, 177–183. doi:10.1016/j.jenvman.2015.03.028.

    Article  CAS  Google Scholar 

  • Scheurer, M., Brauch, H.-J., & Lange, F. T. (2009). Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). [journal article]. Analytical and Bioanalytical Chemistry, 394(6), 1585–1594. doi:10.1007/s00216-009-2881-y.

    Article  CAS  Google Scholar 

  • Schlüter-Vorberg, L., Prasse, C., Ternes, T. A., Mückter, H., & Coors, A. (2015). Toxification by transformation in conventional and advanced wastewater treatment: the antiviral drug acyclovir. Environmental Science & Technology Letters, 2(12), 342–346.

    Article  CAS  Google Scholar 

  • Sengupta, A., Lyons, J. M., Smith, D. J., Drewes, J. E., Snyder, S. A., Heil, A., et al. (2014). The occurrence and fate of chemicals of emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent. Environmental Toxicology and Chemistry, 33(2), 350–358.

    Article  CAS  Google Scholar 

  • Serna-Galvis, E. A., Giraldo-Aguirre, A. L., Silva-Agredo, J., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016a). Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity. [journal article]. Environmental Science and Pollution Research, 1–14, doi:10.1007/s11356-016-6257-5.

  • Serna-Galvis, E. A., Silva-Agredo, J., Giraldo-Aguirre, A. L., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016b). High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrasonics Sonochemistry, 31, 276–283. doi:10.1016/j.ultsonch.2016.01.007.

    Article  CAS  Google Scholar 

  • Shankaraiah, G., Poodari, S., Bhagawan, D., Himabindu, V., & Vidyavathi, S. (2016). Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs)—a comparative study. Desalination and Water Treatment, 1–12.

  • Shetty, R., Chavan, V. B., Kulkarni, P. S., Kulkarni, B. D., & Kamble, S. P. (2016). Photocatalytic degradation of pharmaceuticals pollutants using N-doped TiO2 photocatalyst: identification of CFX degradation intermediates. Indian Chemical Engineer, 1–23.

  • Sodré, F. F., Locatelli, M. A. F., & Jardim, W. F. (2010). Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water, Air, and Soil Pollution, 206(1–4), 57–67.

    Article  CAS  Google Scholar 

  • Sorensen, J. P. R., Lapworth, D. J., Nkhuwa, D. C. W., Stuart, M. E., Gooddy, D. C., Bell, R. A., et al. (2015). Emerging contaminants in urban groundwater sources in Africa. Water Research, 72, 51–63. doi:10.1016/j.watres.2014.08.002.

    Article  CAS  Google Scholar 

  • Stasinakis, A. S., Gatidou, G., Mamais, D., Thomaidis, N. S., & Lekkas, T. D. (2008). Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Research, 42(6), 1796–1804.

    Article  CAS  Google Scholar 

  • Su, C.-C., Chang, A.-T., Bellotindos, L. M., & Lu, M.-C. (2012). Degradation of acetaminophen by Fenton and electro-Fenton processes in aerator reactor. Separation and Purification Technology, 99, 8–13. doi:10.1016/j.seppur.2012.07.004.

    Article  CAS  Google Scholar 

  • Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., & Yu, G. (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerging Contaminants, 1(1), 14–24. doi:10.1016/j.emcon.2015.07.001.

    Article  Google Scholar 

  • Sun, B., Guan, X., Fang, J., & Tratnyek, P. G. (2015). Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn (III). Environmental Science & Technology, 49(20), 12414–12421.

    Article  CAS  Google Scholar 

  • Sun, D., Li, J., He, L., Zhao, B., Wang, T., Li, R., et al. (2014a). Facile solvothermal synthesis of BiOCl–TiO 2 heterostructures with enhanced photocatalytic activity. CrystEngComm, 16(32), 7564–7574.

    Article  CAS  Google Scholar 

  • Sun, Q., Lv, M., Hu, A., Yang, X., & Yu, C.-P. (2014b). Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. Journal of Hazardous Materials, 277, 69–75. doi:10.1016/j.jhazmat.2013.11.056.

    Article  CAS  Google Scholar 

  • Tang, H., Xiang, Q., Lei, M., Yan, J., Zhu, L., & Zou, J. (2012). Efficient degradation of perfluorooctanoic acid by UV–Fenton process. Chemical Engineering Journal, 184, 156–162. doi:10.1016/j.cej.2012.01.020.

    Article  CAS  Google Scholar 

  • Tijani, J. O., Fatoba, O. O., Babajide, O. O., & Petrik, L. F. (2016). Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. [Review]. Environmental Chemistry Letters, 14(1), 27–49. doi:10.1007/s10311-015-0537-z.

    Article  CAS  Google Scholar 

  • Tran, N., Drogui, P., & Brar, S. K. (2015). Sonochemical techniques to degrade pharmaceutical organic pollutants. [journal article]. Environmental Chemistry Letters, 13(3), 251–268. doi:10.1007/s10311-015-0512-8.

    Article  CAS  Google Scholar 

  • Trovó, A. G., Nogueira, R. F. P., Agüera, A., Fernandez-Alba, A. R., Sirtori, C., & Malato, S. (2009). Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Research, 43(16), 3922–3931. doi:10.1016/j.watres.2009.04.006.

    Article  CAS  Google Scholar 

  • Ullattil, S. G., Periyat, P., Naufal, B., & Lazar, M. A. (2016). Self-doped ZnO microrods-high temperature stable oxygen deficient platforms for solar photocatalysis. Industrial & Engineering Chemistry Research.

  • Venier, M., Dove, A., Romanak, K., Backus, S., & Hites, R. (2014). Flame retardants and legacy chemicals in Great Lakes’ water. Environmental Science & Technology, 48(16), 9563–9572. doi:10.1021/es501509r.

    Article  CAS  Google Scholar 

  • Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10), 2929–2934. doi:10.1016/j.envpol.2011.04.033.

    Article  CAS  Google Scholar 

  • Wang, C.-K., & Shih, Y.-H. (2016). Facilitated ultrasonic irradiation in the degradation of diazinon insecticide. Sustainable Environment Research, 26(3), 110–116. doi:10.1016/j.serj.2016.04.003.

    Article  Google Scholar 

  • Wang, C.-Y., Zhang, X., Song, X.-N., Wang, W.-K., & Yu, H.-Q. (2016a). Novel Bi12O15Cl6 photocatalyst for the degradation of bisphenol A under visible-light irradiation. ACS Applied Materials & Interfaces, 8(8), 5320–5326.

    Article  CAS  Google Scholar 

  • Wang, C., & Liu, C. (2014). Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+/H2O2 process. Journal of Environmental Sciences, 26(6), 1332–1339. doi:10.1016/S1001-0742(13)60608-7.

    Article  CAS  Google Scholar 

  • Wang, L., Cao, M., Ai, Z., & Zhang, L. (2015a). Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous–tetrapolyphosphate complex. Environmental Science & Technology, 49(5), 3032–3039. doi:10.1021/es505984y.

    Article  CAS  Google Scholar 

  • Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016b). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787. doi:10.1016/j.jece.2015.12.016.

    Article  CAS  Google Scholar 

  • Wang, W., Zhu, D., Shen, Z., Peng, J., Luo, J., & Liu, X. (2016c). One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity. Industrial & Engineering Chemistry Research.

  • Wang, X. J., Yang, W. Y., Li, F. T., Zhao, J., Liu, R. H., Liu, S. J., et al. (2015b). Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. Journal of Hazardous Materials, 292, 126–136. doi:10.1016/j.jhazmat.2015.03.030.

    Article  CAS  Google Scholar 

  • Wei, X.-X., Cui, H., Guo, S., Zhao, L., & Li, W. (2013). Hybrid BiOBr–TiO2 nanocomposites with high visible light photocatalytic activity for water treatment. Journal of Hazardous Materials, 263(Part 2), 650–658. doi:10.1016/j.jhazmat.2013.10.027.

    Article  CAS  Google Scholar 

  • Xiang, N., Chen, L., Meng, X.-Z., Li, Y.-L., Liu, Z., Wu, B., et al. (2014). Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in a conventional wastewater treatment plant (WWTP) in Shanghai: seasonal variations and potential sources. Science of the Total Environment, 487, 342–349.

    Article  CAS  Google Scholar 

  • Xiao, J., Xie, Y., Cao, H., Nawaz, F., Zhang, S., & Wang, Y. (2016). Disparate roles of doped metal ions in promoting surface oxidation of TiO 2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 315, 59–66.

    Article  CAS  Google Scholar 

  • Xiong, X., & Xu, Y. (2016). Synergetic effect of Pt and borate on the TiO2-photocatalyzed degradation of phenol in water. The Journal of Physical Chemistry C, 120(7), 3906–3912. doi:10.1021/acs.jpcc.5b11923.

    Article  CAS  Google Scholar 

  • Xu, L., Chu, W., & Graham, N. (2013). A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process. Ultrasonics Sonochemistry, 20(3), 892–899.

    Article  CAS  Google Scholar 

  • Xu, Z., Wang, L., Yin, H., Li, H., & Schwegler, B. R. (2016). Source apportionment of non-storm water entries into storm drains using marker species: modeling approach and verification. Ecological Indicators, 61(Part 2), 546–557. doi:10.1016/j.ecolind.2015.10.006.

    Article  CAS  Google Scholar 

  • Yan, C., Nie, M., Yang, Y., Zhou, J., Liu, M., Baalousha, M., et al. (2015). Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters. Journal of Hazardous Materials, 299, 241–248. doi:10.1016/j.jhazmat.2015.06.022.

    Article  CAS  Google Scholar 

  • Yan, Q., Gao, X., Chen, Y.-P., Peng, X.-Y., Zhang, Y.-X., Gan, X.-M., et al. (2014). Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area. Science of the Total Environment, 470–471, 618–630. doi:10.1016/j.scitotenv.2013.09.032.

    Article  CAS  Google Scholar 

  • Yang, B., Zuo, J., Li, P., Wang, K., Yu, X., & Zhang, M. (2016a). Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater. Chemical Engineering Journal, 287, 30–37. doi:10.1016/j.cej.2015.11.033.

    Article  CAS  Google Scholar 

  • Yang, Y., Pignatello, J. J., Ma, J., & Mitch, W. A. (2016b). Effect of matrix components on UV/H2O2 and UV/ S2O8 2−advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Research, 89, 192–200.

    Article  CAS  Google Scholar 

  • Yola, M. L., Eren, T., & Atar, N. (2014). A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. [Article]. Chemical Engineering Journal, 250, 288–294. doi:10.1016/j.cej.2014.03.116.

    Article  CAS  Google Scholar 

  • Zainudin, N. F., Abdullah, A. Z., & Mohamed, A. R. (2010). Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): photocatalytic degradation of phenol. Journal of Hazardous Materials, 174(1–3), 299–306. doi:10.1016/j.jhazmat.2009.09.051.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, J., Liu, R., Gan, J., Liu, J., & Liu, W. (2016). Endocrine-disrupting effects of pesticides through interference with human glucocorticoid receptor. Environmental Science & Technology, 50(1), 435–443. doi:10.1021/acs.est.5b03731.

    Article  CAS  Google Scholar 

  • Zhang, T., Li, C., Ma, J., Tian, H., & Qiang, Z. (2008). Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: property and activity relationship. Applied Catalysis B: Environmental, 82(1), 131–137.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, L., Xie, T., & Wang, D. (2009). Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. The Journal of Physical Chemistry C, 113(17), 7371–7378.

    Article  CAS  Google Scholar 

  • Zhao, J.-L., Ying, G.-G., Liu, Y.-S., Chen, F., Yang, J.-F., & Wang, L. (2010). Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. Journal of Hazardous Materials, 179(1–3), 215–222. doi:10.1016/j.jhazmat.2010.02.082.

    Article  CAS  Google Scholar 

  • Zhoa, Q., Ge, Y., Zuo, P., Shi, D., & Jia, S. (2016). Degradation of Thiamethoxam in aqueous solution by ozonation: influencing factors, intermediates, degradation mechanism and toxicity assessment. Chemosphere, 146, 105–112. doi:10.1016/j.chemosphere.2015.09.009.

    Article  CAS  Google Scholar 

  • Zonja, B., Gonçalves, C., Pérez, S., Delgado, A., Petrovic, M., Alpendurada, M. F., et al. (2014). Evaluation of the phototransformation of the antiviral zanamivir in surface waters through identification of transformation products. Journal of Hazardous Materials, 265, 296–304. doi:10.1016/j.jhazmat.2013.10.008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Esrafili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, M., Esrafili, A., Gholami, M. et al. Contaminants of emerging concern: a review of new approach in AOP technologies. Environ Monit Assess 189, 414 (2017). https://doi.org/10.1007/s10661-017-6097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6097-x

Keywords

Navigation