Skip to main content
Log in

A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper presents a new methodology for analyzing the spatiotemporal variability of water table levels and redesigning a groundwater level monitoring network (GLMN) using the Bayesian Maximum Entropy (BME) technique and a multi-criteria decision-making approach based on ordered weighted averaging (OWA). The spatial sampling is determined using a hexagonal gridding pattern and a new method, which is proposed to assign a removal priority number to each pre-existing station. To design temporal sampling, a new approach is also applied to consider uncertainty caused by lack of information. In this approach, different time lag values are tested by regarding another source of information, which is simulation result of a numerical groundwater flow model. Furthermore, to incorporate the existing uncertainties in available monitoring data, the flexibility of the BME interpolation technique is taken into account in applying soft data and improving the accuracy of the calculations. To examine the methodology, it is applied to the Dehgolan plain in northwestern Iran. Based on the results, a configuration of 33 monitoring stations for a regular hexagonal grid of side length 3600 m is proposed, in which the time lag between samples is equal to 5 weeks. Since the variance estimation errors of the BME method are almost identical for redesigned and existing networks, the redesigned monitoring network is more cost-effective and efficient than the existing monitoring network with 52 stations and monthly sampling frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alizadeh, Z., and Mahjouri, N. (2017). A spatiotemporal Bayesian maximum entropy-based methodology for dealing with sparse data in revising groundwater quality monitoring networks: the Tehran region experience. Environmental Earth Sciences 76:436.

  • Barca, E., Calzolari, M. C., Passarella, G., & Ungaro, F. (2013). Predicting shallow water table depth at regional scale: optimizing monitoring network in space and time. Water Resources Management, 27(15), 5171–5190.

    Google Scholar 

  • Barca, E., Passarella, G., Vurro, M., & Morea, A. (2015). MSANOS: data-driven, multi-approach software for optimal redesign of environmental monitoring networks. Water Resources Management, 29(2), 619–644.

    Article  Google Scholar 

  • Bhat, S., Motz, L. H., & Pathak, C. (2015). Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA. Environmental Monitoring and Assessment, 187, 4183. doi:10.1007/s10661-014-4183-x.

    Article  Google Scholar 

  • Chikodzi, D., & Mutowo, G. (2016). Using river altitude determined from a SRTM DEM to estimate groundwater levels of the Tokwe and Mutirikwi watersheds in Zimbabwe. Journal of Geographic Information System, 8(1), 65–72. doi:10.4236/jgis.2016.81007.

    Article  Google Scholar 

  • Christakos, G. (1990). A Bayesian/maximum-entropy view to the spatial estimation problem. Mathematical Geology, 22(7), 763–777.

    Article  Google Scholar 

  • Christakos, G. (1991). Some applications of the BME concepts in geostatistics. In W. T. Grandy & L. H. Schick (Eds.), Maximum entropy and Bayesian methods (pp. 215–229). Dordrecht: Kluwer Acad. Publ.

    Chapter  Google Scholar 

  • Christakos, G. (1998). Spatiotemporal information systems in soil and environmental sciences. Geoderma, 85(2–3), 141–179.

    Article  Google Scholar 

  • Christakos, G., & Li, X. (1998). Bayesian maximum entropy analysis and mapping: a farewell to kriging estimators. Mathematical Geology, 30(4), 435–462.

    Article  Google Scholar 

  • Christakos, G., Serre, M. L., & Kovitz, J. (2001). BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. Journal of Geophysical Research., 106(D9), 9717–9731.

    Article  Google Scholar 

  • Christakos, G., Bogaert, P., & Serre, M. L. (2002). Temporal GIS. New York: Springer-Verlag Press.

    Google Scholar 

  • Cressie, N., & Huang, H. C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. Journal of the American Statistical Association, 94, 1330–1340.

    Article  Google Scholar 

  • Davis, J. C., & Olea, R. A. (1998). Hexagonal basis of the observation well network. In: R. D. Miller, J. C. Davis, and R. A. Olea (Eds.), 1998 Annual water level raw data report for Kansas. Open-File Report No. 98–7 (electronic version): Kansas Geological Survey.

  • De Cesare, L., Myers, D., Posa, D. (1997). Spatial-temporal modeling of SO2 in milan district. In: E. Y. Baafi, N. A. Schofield (eds) Geostatistics Wollongong Vol. 96(2), (pp. 1031–1042). Dordrecht: Kluwer Academic.

  • De Cesare, L., Myers, D., & Posa, D. (2001). Product-sum covariance for space-time modeling. Environmetrics, 12, 11–23.

    Article  Google Scholar 

  • Delbari, M., Motlagh, M. B., & Amiri, M. (2013). Spatio-temporal variability of groundwater depth in the Eghlid aquifer in southern Iran. Earth Sciences Research Journal, 17(2), 105–114.

    Google Scholar 

  • Fasbender, D., Peeters, L., Bogaert, P., and Dassargues, A. (2008). Bayesian data fusion applied to water table spatial mapping. Water Resources Research, 44(12). doi:10.1029/2008WR006921.

  • Finkenstadt, B., Held, L., & Isham, V. (2006). Statistical methods for spatio-temporal systems. USA: CRC Press, Chapmann and hall.

    Book  Google Scholar 

  • Fullér, R., & Majlender, P. (2003). On obtaining minimal variability OWA operator weights. Fuzzy Sets and Systems, 136, 203–215.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Hosseini, M., and Kerachian, R. (2017). A data fusion-based methodology for optimal redesign of groundwater monitoring networks. Journal of Hydrology 552:267–282.

  • Isaaks, E., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  • Kitanidis, P. K. (1997). Introduction to geostatistics: application to hydrogeology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52(6), 119–139.

    Google Scholar 

  • Kumar, S., Sondhi, S. K., & Phogat, V. (2005). Network design for groundwater level monitoring in upper Bari Doab canal tract, Punjab, India. Irrigation and Drainage, 54(4), 431–442.

    Article  Google Scholar 

  • Mahab Ghods Consulting Engineering Company (2014). Integrated studies and mathematical groundwater modeling of the Ghorveh and Dehgolan plains. Technical Report (in Persian).

  • Manzione, R. L., Wendland, E., & Tanikawa, D. H. (2012). Stochastic simulation of time-series models combined with geostatistics to predict water-table scenarios in a Guarani Aquifer System outcrop area, Brazil. Hydrogeology Journal, 20(7), 1239–1249.

    Article  Google Scholar 

  • Nourani, V., Ejlali, R. G., & Alami, M. T. (2011). Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid neural networks-geostatistics model: a case study. Environmental Engineering Science, 28(3), 217–228. doi:10.1089/ees.2010.0174.

    Article  CAS  Google Scholar 

  • O’Hagan, M. (1990). Using maximum entropy-ordered weighted averaging to construct a fuzzy neuron (pp. 618–623). Proc., 24th Annual IEEE Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, Calif.

  • Olea, R. A. (1984). Sampling design optimization for spatial functions. Mathematical Geology, 16(4), 369–392.

    Article  Google Scholar 

  • Peeters, L., Fasbender, D., Batelaan, O., and Dassargues, A. (2010). Bayesian data fusion for water table interpolation: incorporating a hydrogeological conceptual model in kriging. Water Resources Research, 46(8). doi:10.1029/2009WR008353.

  • Ran, Y., Li, X., Lu, X., & Lian, Y. (2015). Optimal selection of groundwater-level monitoring sites in the Zhangye Basin, Northwest China. Journal of Hydrology, 525, 209–215.

    Article  Google Scholar 

  • Serre, M. L., & Christakos, G. (1999). Modern geostatistics: Computational BME analysis in the light of uncertain physical knowledge—the Equus Beds study. Stochastic Environmental Research and Risk Assessment, 13(1), 1–26.

    Article  Google Scholar 

  • Sophocleous, M., Paschetto, J. E., & Olea, R. A. (1982). Groundwater network design for Northwest Kansas, using the theory of regionalized variables. Ground Water, 20(1), 48–58.

    Article  Google Scholar 

  • Triki, I., Zairi, M., & Dhia, H. B. (2013). A geostatistical approach for groundwater head monitoring network optimization: case of the Sfax superficial aquifer (Tunisia). Water and Environment Journal, 27(3), 362–372.

    Google Scholar 

  • Varouchakis, E. A., & Hristopulos, D. T. (2013). Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environmental Monitoring and Assessment, 185(1), 1–19.

    Article  Google Scholar 

  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183–190.

    Article  Google Scholar 

  • Yu, H. L., & Chu, H. J. (2009). Understanding space-time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan. Journal of Hydrology, 381(3–4), 239–247. doi:10.1016/j.jhydrol.2009.11.046.

    Google Scholar 

  • Yu, H. L., & Lin, Y. C. (2012). Recharge signal identification based on groundwater level observations. Environmental Monitoring and Assessment, 184(10), 5971–5982.

    Article  Google Scholar 

  • Yu, H. L., & Lin, Y. C. (2015). Analysis of space–time non-stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods. Journal of Hydrology, 525, 585–597.

    Article  Google Scholar 

  • Zhou, Y., Dong, D., Liu, J., & Li, W. (2013). Upgrading a regional groundwater level monitoring network for Beijing Plain, China. Geoscience Frontiers, 4(1), 127–138.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been financially supported by Iran National Science Foundation (INSF) under grant number no. 95849284. The authors would like to thank Dr. Mark Serre from the University of North Carolina for his invaluable clarification of some aspects related to the BME. Also, we would like to acknowledge the Mahab Ghods Consulting Engineering Company for sharing the MODFLOW-based groundwater flow simulation model of the Dehgolan plain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Kerachian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Kerachian, R. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks. Environ Monit Assess 189, 433 (2017). https://doi.org/10.1007/s10661-017-6129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6129-6

Keywords

Navigation