Skip to main content

Advertisement

Log in

Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238. https://doi.org/10.1007/s10661-007-9678-2.

    CAS  Google Scholar 

  • Adamu, C. I., & Nganje, T. N. (2010). Heavy metal contamination of surface soil in relationship to land use patterns: a case study of Benue State, Nigeria. Materials Sciences and Applications, 1(3), 127. https://doi.org/10.4236/msa.2010.13021.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer-Verlag 867 p.

    Book  Google Scholar 

  • Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soils of urban areas. Water, Air, and Soil Pollution, 213(1), 121–143. https://doi.org/10.1007/s11270-010-0372-6.

    Article  CAS  Google Scholar 

  • Al-Anbari, R., Al Obaidy, A. H., H. Abd Ali, F. (2015). Pollution loads and ecological risk assessment of heavy metals in the urban soil affected by various anthropogenic activities. International Journal of Advanced Research, 3(2), 104–110.

  • Al Obaidy, A. H. M. J., & Al Mashhadi, A. A. M. (2013). Heavy metal contaminations in urban soil within Baghdad City, Iraq. Journal of Environmental Protection, 4(1), 72–82.

    Article  CAS  Google Scholar 

  • Anikwe, M. A., & Nwobodo, K. C. (2002). Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. Bioresource Technology, 83(3), 241–250. https://doi.org/10.1016/s0960-8524(01)00154-7.

    Article  CAS  Google Scholar 

  • Arruti, A., Fernandez-Olmo, I., & Irabien, A. (2010). Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). Journal of Environmental Monitoring, 12(7), 1451–1458. https://doi.org/10.1039/B926740A.

    Article  CAS  Google Scholar 

  • Awadh, S. M., Al-Kilabi, J. A., & Khaleefah, N. H. (2015). Comparison the geochemical background, threshold and anomaly with pollution indices in the assessment of soil pollution: Al-Hawija, north of Iraq case study. International Journal of Science and Research, 4(7), 2357–2363.

    Google Scholar 

  • Barkouch, Y., Sedki, A., & Ponesu, A. (2007). A new approach for understanding lead transfer in agricultural soil. Water, Air, and Soil Pollution, 186(1–4), 3–13. https://doi.org/10.1007/s11270-007-9450-9.

    Article  CAS  Google Scholar 

  • Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil. Journal of Environmental Quality, 34(1), 49–63. https://doi.org/10.2134/jeq2005.0049dup.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Routh, J., Jacks, G., Bhattacharya, P., & Mörth, M. (2006). Environmental assessment of abandoned mine tailings in Adak, Västerbotten district (northern Sweden). Applied Geochemistry, 21(10), 1760–1780. https://doi.org/10.1016/j.apgeochem.2006.06.011.

  • Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2006). The influence of a large city on some soil properties and metals content. Science of the Total Environment, 356(1–3), 154–164. https://doi.org/10.1016/j.scitotenv.2005.04.033.

    Article  CAS  Google Scholar 

  • Biasioli, M., Grčman, H., Kralj, T., Madrid, F., Díaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils. Journal of Environmental Quality, 36, 70–79. https://doi.org/10.2134/jeq2006.0254.

    Article  CAS  Google Scholar 

  • Birch, G. F., Vanderhayden, M., & Olmos, M. (2011). The nature and distribution of metals in soils of the Sydney estuary catchment, Australia. Water, Air and Soil Pollution, 216(1–4), 581–604 http://10.0.3.239/s11270-010-0555-1.

    Article  CAS  Google Scholar 

  • Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigations in the berlin metropolitan area. Environmental Geochemistry and Health, 22(3), 233–248. https://doi.org/10.1023/A:1026554308673.

    Article  CAS  Google Scholar 

  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2014). Temporal trends and bioavailability assessment of heavy metals in the sediments of Deception Bay, Queensland, Australia. Marine Pollution Bulletin, 89(1), 464–472. https://doi.org/10.1016/j.marpolbul.2014.09.030.

  • Brevik, E. C., & Burgess, L. C. (2012). Soils and human health. CRC Press.

  • Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G., & Painho, M. (2005). Assessing heavy metal contamination in Sado estuary sediment: an index analysis approach. Ecological Indicators, 5(2), 151–169. https://doi.org/10.1016/j.ecolind.2005.02.001.

  • Cantinho, P., Matos, M., Trancoso, M. A., & dos Santos, M. M. C. (2016). Behaviour and fate of metals in urban wastewater treatment plants: a review. International Journal of Environmental Science and Technology, 13(1), 359–386. https://doi.org/10.1007/s13762-015-0887-x.

    Article  CAS  Google Scholar 

  • Cappuyns, V., Swennen, R., & Verhulst, J. (2004). Assessment of acid neutralizing capacity and potential mobilisation of trace metals from land-disposed dredged sediments. Science of the Total Environment, 333(1), 233–247. https://doi.org/10.1016/j.scitotenv.2004.05.007.

    Article  CAS  Google Scholar 

  • Caroli, S. (2000). Elements in food analysis and classification. Warsaw: Proceedings of the 2nd International Conference on Trace Elements.

  • Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemospehere, 134(Supplement C), 67–75. https://doi.org/10.1016/j.chemosphere.2015.04.008.

  • Chaney, R. L., Ryan, J. A., Kukier, U., Brown, S. L., Siebielec, G., Malik, M., & Angle, J. S. (2001). Heavy metal aspects of compost use. In Compost utilization in horticultural cropping systems (pp. 327–363). CRC Press.

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551. https://doi.org/10.1016/j.chemosphere.2004.12.072.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of The Total Environment, 512(Supplement C), 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025.

  • Chen, H., Teng, Y., Lu, S., Wang, Y., Wu, J., & Wang, J. (2016). Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere, 144(Supplement C), 1002–1011. https://doi.org/10.1016/j.chemosphere.2015.09.081.

  • Cheng, J. L., Shi, Z., & Zhu, Y. W. (2007). Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. Journal of Environmental Sciences, 19(1), 50–54. https://doi.org/10.1016/S1001-0742(07)60008-4.

    Article  CAS  Google Scholar 

  • Cheng, H., & Hu, Y. (2012). Mercury in municipal solid waste in China and its control: a review. Environmental Science and Technology, 46(2), 593–605. https://doi.org/10.1021/es2026517.

    Article  CAS  Google Scholar 

  • Cheng, H., Li, M., Zhao, C., Li, K., Peng, M., Qin, A., & Cheng, X. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 139(Supplement C), 31–52. https://doi.org/10.1016/j.gexplo.2013.08.012.

  • Christophoridis, C., Dedepsidis, D., & Fytianos, K. (2009). Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. Journal of Hazardous Materials, 168(2–3), 1082–1091. https://doi.org/10.1016/j.jhazmat.2009.02.154.

  • Clemente, R., Walker, D. J., Roig, A., & Pilar Bernal, M. (2003). Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain). Biodegradation, 14(3), 199–205. https://doi.org/10.1023/A:1024288505979.

    Article  CAS  Google Scholar 

  • Damek-Poprawa, M., & Sawicka-Kapusta, K. (2003). Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology, 186, 1–2), 1–10. https://doi.org/10.1016/S0300-483X(02)00595-4.

  • Davydova, S. L., Tagasov, V. I. (2004). Petroleum oil products in environment. 36. Study book. – M.: RUDN.

  • De Vries, W., Schütze, G., Lofts, S., Tipping, E., Meili, M., Römkens, P., Groenenberg, J. E. (2005). Calculation of critical loads for cadmium, lead and mercury; background document to a mapping manual on critical loads of cadmium, lead and mercury. Alterra, Wageningen.

  • Díaz Rizo, O., Fonticiella Morell, D., Arado López, J. O., Borrell Muñoz, J. L., D’Alessandro Rodríguez, K., & López Pino, N. (2013). Spatial distribution and contamination assessment of heavy metals in urban Topsoils from Las Tunas City, Cuba. Bulletin of Environmental Contamination and Toxicology, 91(1), 29–35. https://doi.org/10.1007/s00128-013-1020-9.

    Article  CAS  Google Scholar 

  • Doležalová Weissmannová, H., Pavlovský, J., & Chovanec, P. (2015). Heavy metal contaminations of urban soils in Ostrava, Czech Republic: assessment of metal pollution and using principal component analysis. International Journal of Environmental Research, 9(2), 683–696.

    Google Scholar 

  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environmental Science and Technology, 47(10), 4967–4983. https://doi.org/10.1021/es305071v.

    Article  CAS  Google Scholar 

  • Elias, P., & Gbadegesin, A. (2011). Spatial relationships of urban land use, soils and heavy metal concentrations in Lagos mainland area. Journal of Applied Sciences and Environmental Management, 15(2), 391–399.

    CAS  Google Scholar 

  • Eriksson, J. (2001). Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops (vol. 5159). Swedish Environmental Protection Agency, Stockholm.

  • Esmaeilzadeh, M., Karbassi, A., & Moattar, F. (2016). Assessment of metal pollution in the Anzali wetland sediments using chemical partitioning method and pollution indices. Acta Oceanologica Sinica, 35(10), 28–36. https://doi.org/10.1007/s13131-016-0920-z.

    Article  CAS  Google Scholar 

  • European Communities. (2006). Proposal for a directive of the European Parliament and of the council establishing a framework for the protection of soil and amending directive 2004/35/EC.COM(2006) 232.2004/35/EC.COM(2006) 232. Brussels: European Commission.

  • Fan, J., He, Z., Ma, L. Q., & Stoffella, P. J. (2011). Accumulation and availability of copper in citrus grove soils as affected by fungicide application. Journal of Soils and Sediments, 11(4), 639–648. https://doi.org/10.1007/s11368-011-0349-0.

    Article  CAS  Google Scholar 

  • Fernández-Ondoño, E., Bacchetta, G., Lallena, A. M., Navarro, F. B., Ortiz, I., Jiménez, M. N. (2017). Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. Journal of Geochemical Exploration, 172(Supplement C), 133–141. doi:https://doi.org/10.1016/j.gexplo.2016.09.013.

  • FOREGS. (2005). Forum of the European geological survey directors. Geochemical Atlas of Europe. Espoo: Geological Survey of Finland.

  • Gao, X., & Chen, C. T. A. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46(6), 1901–1911. https://doi.org/10.1016/j.watres.2012.01.007.

    Article  CAS  Google Scholar 

  • Gao, H., Bai, J., Xiao, R., Liu, P., Jiang, W., & Wang, J. (2013). Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stochastic Environmental Research and Risk Assessment, 27(1), 275–284. https://doi.org/10.1007/s00477-012-0587-8.

    Article  Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6–7), 451–467. https://doi.org/10.1016/S0165-9936(02)00603-9.

  • Gonçalves Jr., A. C., Nacke, H., Schwantes, D., & Coelho, G. F. (2014). Heavy metal contamination in Brazilian agricultural soils due to application of fertilizers, Ch. 04. In M. C. Hernandez-Soriano (Ed.), Environmental risk assessment of soil contamination. Rijeka: InTech. https://doi.org/10.5772/57268.

    Google Scholar 

  • Gong, Q., Deng, J., Xiang, Y., Wang, Q., & Yang, L. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4.

    Article  CAS  Google Scholar 

  • Gu, Y. G., Gao, Y. P., & Lin, Q. (2016). Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Applied Geochemistry, 67, 52–58. https://doi.org/10.1016/j.apgeochem.2016.02.004.

  • Guan, Y., Shao, C., & Ju, M. (2014). Heavy metal contamination assessment and partition for industrial and mining gathering areas. International Journal of Environmental Research and Public Health, 11(7), 7286–7303. https://doi.org/10.3390/ijerph110707286.

    Article  CAS  Google Scholar 

  • Guillén, M. T., Delgado, J., Albanese, S., Nieto, J. M., Lima, A., & De Vivo, B. (2011). Environmental geochemical mapping of Huelva municipality soils (SW Spain) as a tool to determine background and baseline values. Journal of Geochemical Exploration, 109(1–3), 59–69. https://doi.org/10.1016/j.gexplo.2011.03.003.

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Han, F. X., Su, Y., Monts, D. L., Waggoner, C. A., & Plodinec, M. J. (2006). Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Science of the Total Environment, 368(2), 753–768. https://doi.org/10.1016/j.scitotenv.2006.02.026.

    Article  CAS  Google Scholar 

  • He, Z. L., Xu, H. P., Zhu, Y. M., Yang, X. E., & Chen, G. C. (2005a). Adsorption-desorption characteristics of cadmium in variable charge soils. Journal of Environmental Science and Health, Part A, 40(4), 805–822. https://doi.org/10.1081/ESE-200048273.

    Article  CAS  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005b). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010.

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276.

    Article  Google Scholar 

  • Hong-gui, D., Teng-feng, G., Ming-hui, L., & Xu, D. (2012). Comprehensive assessment model on heavy metal pollution in soil. International Journal of Electrochemical Science, 7(6), 5286–5296.

    Google Scholar 

  • Hou, D., O’Connor, D., Nathanail, P., Tian, L., & Ma, Y. (2017). Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.07.021.

  • Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20(9), 6150–6159. https://doi.org/10.1007/s11356-013-1668-z.

    Article  CAS  Google Scholar 

  • Inengite, A. K., Abasi, C. Y., & Walter, C. (2015). Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil. International Research Journal of Pure and Applied Chemistry, 8(3), 175–189. https://doi.org/10.9734/IRJPAC/2015/17859.

    Article  CAS  Google Scholar 

  • Islam, E. U., Yang, X., He, Z., & Mahmood, Q. (2007). Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. Journal of Zhejiang University. Science. B, 8(1), 1–13. https://doi.org/10.1631/jzus.2007.B0001.

    Article  CAS  Google Scholar 

  • Ivezić, V., Lončarić, Z., Engler, M., Kerovec, D., & Ram Singh, B. (2013). Comparison of different extraction methods representing available and total concentrations of Cd, Cu, Fe, Mn and Zn in soil. Poljoprivreda, 19, 53–58.

    Google Scholar 

  • Ji, Y., Feng, Y., Wu, J., Zhu, T., Bai, Z., & Duan, C. (2008). Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 20(5), 571–578. https://doi.org/10.1016/S1001-0742(08)62096-3.

    Article  CAS  Google Scholar 

  • Ji, K., Kim, J., Lee, M., Park, S., Kwon, H. J., Cheong, H. K., Jang, J. Y., Kim, D. S., Yu, S., Lee, K. Y., Yang, S. O., Jhung, I. J., Yang, W. H., Peak, D. H., Hong, Y. C., & Choi, K. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178(Supplement C), 322–328. https://doi.org/10.1016/j.envpol.2013.03.031.

  • Jiang, L. Y., Yang, X. E., & He, Z. L. (2004). Growth response and phytoextraction of copper at different levels in soils by Elsholtzia Splendens. Chemosphere, 55(9), 1179–1187. https://doi.org/10.1016/j.chemosphere.2004.01.026.

    Article  CAS  Google Scholar 

  • Jiang, Y., Wang, X., Wu, M., Sheng, G., & Fu, J. (2011). Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soil of shanghai, China. Environmental Monitoring and Assessment, 183(1), 139–150. https://doi.org/10.1007/s10661-011-1913-1.

    Article  CAS  Google Scholar 

  • Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C., & Yang, Z. P. (2014). Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14(6), 1599–1610.

    Article  Google Scholar 

  • Jing, Y. D., He, Z. L., Yang, X. E., & Sun, C. Y. (2008). Evaluation of soil tests for plant available mercury in a soil–crop rotation system. Communications in Soil Science and Plant Analysis, 39(19–20), 3032–3046. https://doi.org/10.1080/00103620802432907.

    Article  CAS  Google Scholar 

  • Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126(2), 225–233. https://doi.org/10.1016/S0269-7491(03)00191-X.

  • Kabata-Pendias, A. (2011). Trace elements of soils and plants (fourth ed.pp. 28–534). USA: CRC Press, Taylor & Francis Group, LLC.

  • Karbassi, A. R., Tajziehchi, S., & Afshar, S. (2015). An investigation on heavy metals in soils around oil field area. Global Journal of Environmental Science and Management, 1(4), 275–282. https://doi.org/10.7508/gjesm.2015.04.002.

    CAS  Google Scholar 

  • Karim, Z., Qureshi, B. A., Mumtaz, M. (2015). Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecological Indicators, 48(Supplement C), 358–364. doi:https://doi.org/https://doi.org/10.1016/j.ecolind.2014.08.032.

  • Karimi Nezhad, M. T., Mohammadi, K., Gholami, A., Hani, A., & Shariati, M. S. (2014). Cadmium and mercury in topsoils of Babagorogor watershed, western Iran: Distribution, relationship with soil characteristics and multivariate analysis of contamination sources. Geoderma, 219(Supplement C), 177–185. https://doi.org/10.1016/j.geoderma.2013.12.021.

  • Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., & Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175(Supplement C), 473–481. https://doi.org/10.1016/j.chemosphere.2017.02.029.

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma, 221(Supplement C), 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692. https://doi.org/10.1016/j.envpol.2007.06.056.

    Article  CAS  Google Scholar 

  • Kibble, A., & Russell, D. (2010). Contaminated land and health. In R. L. Maynard et al. (Eds.), Environmental medicine (pp. 565–573). Boca Raton, Florida, USA: CRC Press.

    Chapter  Google Scholar 

  • Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity – A case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053.

    Article  CAS  Google Scholar 

  • Kuusisto-Hjort, P., & Hjort, J. (2013). Land use impacts on trace metal concentrations of suburban stream sediments in the Helsinki region, Finland. Science of The Total Environment, 456(Supplement C), 222–230. https://doi.org/10.1016/j.scitotenv.2013.03.086.

    Article  CAS  Google Scholar 

  • Lado, L. R., Hengl, T., & Reuter, H. I. (2008). Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma, 148(2), 189–199. https://doi.org/10.1016/j.geoderma.2008.09.020.

    Article  CAS  Google Scholar 

  • Lee, C. S., Li, X., Shi, W., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Science of the Total Environment, 356(1), 45–61. https://doi.org/10.1016/j.scitotenv.2005.03.024.

    Article  CAS  Google Scholar 

  • Lee, C. S. L., Li, X. D., Zhang, G., Li, J., Ding, A. J., & Wang, T. (2007). Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants. Atmospheric Environment, 41(2), 432–447. https://doi.org/10.1016/j.atmosenv.2006.07.035.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468(Supplement C), 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090.

    Article  CAS  Google Scholar 

  • Li, J., Jia, C., Lu, Y., Tang, S., & Shim, H. (2015a). Multivariate analysis of heavy metal leaching from urban soils following simulated acid rain. Microchemical Journal, 122(Supplement C), 89–95. https://doi.org/10.1016/j.microc.2015.04.015.

    Article  CAS  Google Scholar 

  • Li, H., Shi, A., & Zhang, X. (2015b). Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park. Journal of Environmental Sciences, 32(Supplement C), 228–237. https://doi.org/10.1016/j.jes.2014.11.014.

  • Liang, J., Chen, C., Song, X., Han, Y., & Liang, Z. (2011). Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area. International Journal of Electrochemical Science, 6(2011), 5314–5324.

    CAS  Google Scholar 

  • Liao, J., Wen, Z., Ru, X., Chen, J., Wu, H., & Wei, C. (2016). Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: public health implications in Guangdong Province, China. Ecotoxicology and Environmental Safety, 124(Supplement C), 460–469. https://doi.org/10.1016/j.ecoenv.2015.11.023.

    Article  CAS  Google Scholar 

  • Likuku, A. S., Mmolawa, K. B., & Gaboutloeloe, G. K. (2013). Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe region, Eastern Botswana. Environment and Ecology Research, 1(2), 32–40. 10.13189/eer.2013.010202.

    Google Scholar 

  • Lim, H. S., Lee, J. S., Chon, H. T., Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96(2–3), 223–230. doi:https://doi.org/10.1016/j.gexplo.2007.04.008.

  • Lin, Y. C., Chang-Chien, G. P., Chiang, P. C., Chen, W. H., & Lin, Y. C. (2013). Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan. Marine Pollution Bulletin, 76(1), 266–275. https://doi.org/10.1016/j.marpolbul.2013.08.027.

    Article  CAS  Google Scholar 

  • Linde, M., Bengtsson, H., & Öborn, I. (2001). Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water, Air and Soil Pollution: Focus, 1(3), 83–101. https://doi.org/10.1023/A:1017599920280.

    Article  CAS  Google Scholar 

  • Liu, W., Zhao, J., Ouyang, Z., Söderlund, L., & Liu, G. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31(6), 805–812. https://doi.org/10.1016/j.envint.2005.05.042.

    Article  CAS  Google Scholar 

  • Liu, R., Wang, M., Chen, W., & Peng, C. (2016). Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environmental Pollution, 210, 174–181. https://doi.org/10.1016/j.envpol.2015.11.044.

    Article  CAS  Google Scholar 

  • Ljung, K., Otabbong, E., & Selinus, O. (2006a). Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environmental Geochemistry and Health, 28(4), 353–364. https://doi.org/10.1007/s10653-005-9031-z.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., & Otabbong, E. (2006b). Metals in soils of children’s urban environments in the small northern European city of Uppsala. Science of the Total Environment, 366(2), 749–759. https://doi.org/10.1016/j.scitotenv.2005.09.073.

    Article  CAS  Google Scholar 

  • Long, E. R., MacDonald, D. D., Severn, C. G., & Hong, C. B. (2000). Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environmental Toxicology and Chemistry, 19(10), 2598–2601. https://doi.org/10.1002/etc.5620191028.

    Article  CAS  Google Scholar 

  • Long, E. R., Ingersoll, C. G., & MacDonald, D. D. (2006). Calculation and uses of mean sediment quality guideline quotients: A critical review. Environmental Science and Technology, 40(6), 1726–1736. https://doi.org/10.1021/es058012d.

    Article  CAS  Google Scholar 

  • Long, Y. Y., Hu, L. F., Fang, C. R., Wu, Y. Y., & Shen, D. S. (2009). An evaluation of the modified BCR sequential extraction procedure to assess the potential mobility of copper and zinc in MSW. Microchemical Journal, 91(1), 1–5. https://doi.org/10.1016/j.microc.2008.05.006.

    Article  CAS  Google Scholar 

  • Loska, K., Wiechula, D., Barska, B., Cebula, E., & Chojnecka, A. (2003). Assessment of arsenic enrichment of cultivated soils in southern Poland. Polish Journal of Environmental Studies, 12(2), 187 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=9467114&lang=cs&site=eds-live.

    CAS  Google Scholar 

  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165. https://doi.org/10.1016/S0160-4120(03)00157-0.

    Article  CAS  Google Scholar 

  • Lu, X., Wang, L., Lei, K., Huang, J., & Zhai, Y. (2009). Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal of Hazardous Materials, 161(2–3), 1058–1062. https://doi.org/10.1016/j.jhazmat.2008.04.052.

    Article  CAS  Google Scholar 

  • Lu, S. G., & Bai, S. Q. (2010). Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: Relationship with different land uses. Environmental Earth Sciences, 60(7), 1481–1490. https://doi.org/10.1007/s12665-009-0283-2.

    Article  CAS  Google Scholar 

  • Luo, X., Yu, S., Zhu, Y., & Li, X. (2012). Trace metal contamination in urban soils of China. Science of the Total Environment, 421, 17–30. https://doi.org/10.1016/j.scitotenv.2011.04.020.

    Article  CAS  Google Scholar 

  • Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X., & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144(Supplement C), 264–272. https://doi.org/10.1016/j.chemosphere.2015.08.026.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300(1), 229–243. https://doi.org/10.1016/S0048-9697(02)00273-5.

    Article  CAS  Google Scholar 

  • Markiewicz-Patkowska, J., Hursthouse, A., & Przybyla-Kij, H. (2005). The interaction of heavy metals with urban soils: Sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environment International, 31(4), 513–521. https://doi.org/10.1016/j.envint.2004.09.004.

  • McBride, M. B., & Cherney, J. (2004). Molybdenum, sulfur, and other trace elements in farm soils and forages after sewage sludge application. Communications in Soil Science and Plant Analysis, 35(3–4), 517–535. https://doi.org/10.1081/CSS-120029729.

    Article  CAS  Google Scholar 

  • McBride, M. B. (2013). Arsenic and lead uptake by vegetable crops grown on historically contaminated orchard soils. Applied and Environmental Soil Science, 2013.

  • McCready, S., Birch, G. F., & Long, E. R. (2006). Metallic and organic contaminants in sediments of Sydney harbour, Australia and vicinity—a chemical dataset for evaluating sediment quality guidelines. Environment International, 32(4), 455–465. https://doi.org/10.1016/j.envint.2005.10.006.

    Article  Google Scholar 

  • Ministry of Environment (1994) Regulation of the Ministry of Environment No. 13/1994 Coll. of Czech Republic. The protection of land resources in Czech Republic. The collection of Laws of Czech Republic, 1–12.

  • McLaren, R. G., Clucas, L. M., & Taylor, M. D. (2005). Leaching of macronutrients and metals from undisturbed soils treated with metal-spiked sewage sludge. 3. Distribution of residual metals. Soil Research, 43(2), 159–170. https://doi.org/10.1071/SR04109.

  • Mohamed, T. A., Mohamed, M. A., Rabeiy, R., & Ghandour, M. A. (2014). Application of pollution indices for evaluation of heavy metals in soil close to phosphate fertilizer plant, Assiut, Egypt. Assiut University Bulletin Environmental Research, 17(1), 45–55.

    Google Scholar 

  • Morgan, R. (2012). Soil, heavy metals, and human health. In Soils and human health (pp. 59–82). CRC Press.

  • Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101(3), 218–224. https://doi.org/10.1016/j.gexplo.2008.07.002.

    Article  CAS  Google Scholar 

  • Morton-Bermea, O., Hernández-Álvarez, E., Lozano, R., Guzmán-Morales, J., & Martínez, G. (2010). Spatial distribution of heavy metals in top soils around the industrial facilities of Cromatos de México, Tultitlan Mexico. Bulletin of Environmental Contamination and Toxicology, 85(5), 520–524. https://doi.org/10.1007/s00128-010-0124-8.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S., Masto, R. E., Yadav, A., George, J., Ram, L. C., & Shukla, S. P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of The Total Environment, 542(Part A), 540–550. https://doi.org/10.1016/j.scitotenv.2015.10.035.

  • Muller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking. Chemiker-Zeitung, 105, 157–164.

    Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Nieto, J. M., Sarmiento, A. M., Olías, M., Canovas, C. R., Riba, I., Kalman, J., & Delvalls, T. A. (2007). Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva estuary. Environment International, 33(4), 445–455. https://doi.org/10.1016/j.envint.2006.11.010.

    Article  Google Scholar 

  • Obiora, S. C., Chukwu, A., & Davies, T. C. (2016). Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. Journal of African Earth Sciences, 116(Supplement C), 182–189. https://doi.org/10.1016/j.jafrearsci.2015.12.025.

    Article  CAS  Google Scholar 

  • Ogunkunle, C. O., & Fatoba, P. O. (2013). Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in southwest Nigeria. Polish Journal of Environmental Studies, 22(2), 487–493.

    CAS  Google Scholar 

  • Oje, O. A., Uzoegwu, P. N., Onwurah, I. N. E., & Nwodo, U. U. (2010). Environmental pollution levels of lead and zinc in Ishiagu and Uburu communities of Ebonyi State, Nigeria. Bulletin of Environmental Contamination and Toxicology, 85(3), 313–317. https://doi.org/10.1007/s00128-010-0082-1.

    Article  CAS  Google Scholar 

  • Oliva, S. R., & Espinosa, A. J. F. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 86(1), 131–139. https://doi.org/10.1016/j.microc.2007.01.003.

    Article  CAS  Google Scholar 

  • Ololade, I. A. (2014). An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. Journal of Environmental Protection, 2014.

  • Omran, E. S. E. (2016). Environmental modelling of heavy metals using pollution indices and multivariate techniques in the soils of Bahr el Baqar, Egypt. Modeling Earth Systems and Environment, 2(3), 119. https://doi.org/10.1007/s40808-016-0178-7.

    Article  Google Scholar 

  • Pagotto, C., Remy, N., Legret, M., & Le Cloirec, P. (2001). Heavy metal pollution of road dust and roadside soil near a major rural highway. Environmental Technology, 22(3), 307–319.

    Article  CAS  Google Scholar 

  • Pam, A. A., Sha’Ato, R., & Offem, J. O. (2013). Evaluation of heavy metals in soils around auto mechanic workshop clusters in Gboko and Makurdi, Central Nigeria. Journal of Environmental chemistry and Ecotoxicology, 5(11), 298–306.

    CAS  Google Scholar 

  • Pan, L., Ma, J., Wang, X., & Hou, H. (2016). Heavy metals in soils from a typical county in Shanxi Province, China: levels, sources and spatial distribution. Chemosphere, 148(Supplement C), 248–254. https://doi.org/10.1016/j.chemosphere.2015.12.049.

    Article  CAS  Google Scholar 

  • Pastor, J., & Hernández, A. J. (2012). Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact. Journal of Environmental Management, 95(Supple), S42–S49. https://doi.org/10.1016/j.jenvman.2011.06.048.

    Article  CAS  Google Scholar 

  • Paz-Ferreiro, J., & Fu, S. (2016). Biological indices for soil quality evaluation: perspectives and limitations. Land Degradation and Development, 27(1), 14–25. https://doi.org/10.1002/ldr.2262.

    Article  Google Scholar 

  • Pejman, A., Nabi Bidhendi, G., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: a case study. Ecological Indicators, 58, 365–373. https://doi.org/10.1016/j.ecolind.2015.06.012.

    Article  CAS  Google Scholar 

  • Peña-Icart, M., Pereira-Filho, E. R., Lopes Fialho, L., Nóbrega, J. A., Alonso-Hernández, C., Bolaños-Alvarez, Y., & Pomares-Alfonso, M. S. (2017). Combining contamination indexes, sediment quality guidelines and multivariate data analysis for metal pollution assessment in marine sediments of Cienfuegos Bay, Cuba. Chemosphere, 168(Supplement C), 1267–1276. https://doi.org/10.1016/j.chemosphere.2016.10.053.

    Article  CAS  Google Scholar 

  • Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Ajmone-Marsan, F. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157(2), 680–689. https://doi.org/10.1016/j.envpol.2008.08.009.

    Article  CAS  Google Scholar 

  • Pouyat, R. V., Yesilonis, I. D., Russell-Anelli, J., & Neerchal, N. K. (2007). Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Science Society of America, 71(3).

  • Posch, M., Slootweg, J., Hettelingh, J. P. (2005). European critical loads and dynamic modelling: CCE status report Geneva: UNECE.

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385. https://doi.org/10.1016/j.ecoenv.2015.06.019.

    Article  CAS  Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4.

    Article  Google Scholar 

  • Qu, J., Yuan, V., Wang, X., Shao, P., & Cong, Q. (2004). Distribution of heavy metals, chemical fractions and ecological risks around a molybdenum mine in Liaoning Province, China. Vitamins and Trace Elements, 1(3), 1–6.

    Google Scholar 

  • Rahman, M. S., Saha, N., & Molla, A. H. (2014). Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environmental Earth Sciences, 71(5), 2293–2308. https://doi.org/10.1007/s12665-013-2631-5.

    Article  CAS  Google Scholar 

  • Rahmanipour, F., Marzaioli, R., Bahrami, H. A., Fereidouni, Z., & Bandarabadi, S. R. (2014). Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators, 40(Supplement C), 19–26. https://doi.org/10.1016/j.ecolind.2013.12.003.

    Article  CAS  Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Lopez Sanchez, J. F. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189(1), 291–333. https://doi.org/10.1007/s11270-007-9564-0.

    Article  CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science and Technology, 34(24), 5084–5091. https://doi.org/10.1021/es001339o.

    Article  CAS  Google Scholar 

  • Resongles, E., Casiot, C., Freydier, R., Dezileau, L., Viers, J., & Elbaz-Poulichet, F. (2014). Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Science of the Total Environment, 481(Supplement C), 509–521. https://doi.org/10.1016/j.scitotenv.2014.02.078.

    Article  CAS  Google Scholar 

  • Ripin, S. N. M., Hasan, S., Kamal, M. L., & Hashim, N. M. (2014). Analysis and pollution assessment of heavy metal in soil, Perlis. Malaysian Journal of Analytical Sciences, 18(1), 155–161.

    Google Scholar 

  • Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: the issues and the science. Procedia Engineering, 83, 52–59. https://doi.org/10.1016/j.proeng.2014.09.012.

    Article  CAS  Google Scholar 

  • Rosado, D., Usero, J., & Morillo, J. (2016). Ability of 3 extraction methods (BCR, Tessier and protease K) to estimate bioavailable metals in sediments from Huelva estuary (southwestern Spain). Marine Pollution Bulletin, 102(1), 65–71. https://doi.org/10.1016/j.marpolbul.2015.11.057.

    Article  CAS  Google Scholar 

  • Rowe, C. L. (2014). Bioaccumulation and effects of metals and trace elements from aquatic disposal of coal combustion residues: recent advances and recommendations for further study. Science of The Total Environment, 485(Supplement C), 490–496. https://doi.org/10.1016/j.scitotenv.2014.03.119.

    Article  CAS  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 659.

  • Sager, M., Chon, H.-T., & Marton, L. (2015). Spatial variation of contaminant elements of roadside dust samples from Budapest (Hungary) and Seoul (Republic of Korea), including Pt, Pd and Ir. Environmental Geochemistry and Health, 37(1), 181–193. https://doi.org/10.1007/s10653-014-9639-y.

    Article  CAS  Google Scholar 

  • Sahito, O. M., Afridi, H. I., Kazi, T. G., & Baig, J. A. (2015). Evaluation of heavy metal bioavailability in soil amended with poultry manure using single and BCR sequential extractions. International Journal of Environmental Analytical Chemistry, 95(11), 1066–1079.

    CAS  Google Scholar 

  • Sanders, P. F. (2003). Ambient levels of metals in New Jersey soils. New Jersey Department of Environmental Protection, Division of Science, Research & Technology, Environmental Assessment and Risk Analysis Element.

  • Sayadi, M. H., Shabani, M., & Ahmadpour, N. (2015). Pollution index and ecological risk of heavy metals in the surface soils of Amir-Abad Area in Birjand City, Iran. Health Scope, 4(1 SP ee21137).

  • Serbaji, M. M., Azri, C., & Medhioub, K. (2012). Anthropogenic contributions to heavy metal distributions in the surface and sub-surface sediments of the northern coast of Sfax, Tunisia. International Journal of Environmental Research, 6(3), 613–626.

    CAS  Google Scholar 

  • Shen, F., Liao, R., Ali, A., Mahar, A., Guo, D., Li, R., Xining, S., Awasthi, M. K., Wang, Q., & Zhang, Z. (2017). Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicology and Environmental Safety, 139(Supplement C), 254–262. https://doi.org/10.1016/j.ecoenv.2017.01.044.

    Article  CAS  Google Scholar 

  • Shu, Y., & Zhai, S. (2014). Study on soil heavy metals contamination of a lead refinery. Chinese Journal of Geochemistry, 33(4), 393–397. https://doi.org/10.1007/s11631-014-0703-1.

    Article  CAS  Google Scholar 

  • Silva, N., Haro, J., & Prego, R. (2009). Metals background and enrichment in the Chiloé Interior Sea sediments (Chile). Is there any segregation between fjords, channels and sounds? Estuarine, Coastal and Shelf Science, 82(3), 469–476.

    Article  CAS  Google Scholar 

  • Simasuwannarong, B., Satapanajaru, T., Khuntong, S., & Pengthamkeerati, P. (2012). Spatial distribution and risk assessment of As, Cd, Cu, Pb, and Zn in topsoil at Rayong Province, Thailand. Water, Air, and Soil Pollution, 223(5), 1931–1943. https://doi.org/10.1007/s11270-011-0995-2.

    Article  CAS  Google Scholar 

  • Skordas, K., & Kelepertsis, A. (2005). Soil contamination by toxic metals in the cultivated region of Agia, Thessaly, Greece. Identification of sources of contamination. Environmental Geology, 48(4), 615–624. https://doi.org/10.1007/s00254-005-1319-x.

    Article  CAS  Google Scholar 

  • Soliman, N. F., Nasr, S. M., & Okbah, M. A. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. Journal of Environmental Health Science and Engineering, 13, 70. https://doi.org/10.1186/s40201-015-0223-x.

    Article  CAS  Google Scholar 

  • Sträter, E., Westbeld, A., & Klemm, O. (2010). Pollution in coastal fog at Alto Patache, Northern Chile. Environmental Science and Pollution Research, 17(9), 1563–1573. https://doi.org/10.1007/s11356-010-0343-x.

    Article  CAS  Google Scholar 

  • Streets, D. G., Lu, Z., Levin, L., Ter Schure, A. F. H., Sunderland, E. M. (2017). Historical releases of mercury to air, land, and water from coal combustion. Science of The Total Environment, 615(Supplement C), 131–140. doi:https://doi.org/10.1016/j.scitotenv.2017.09.207.

  • Su, C., Jiang, L., & Zhang, W. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics., 3(2), 24–38. https://doi.org/10.1016/j.envint.2014.04.014.

    Google Scholar 

  • Sungur, A., Soylak, M., Yilmaz, E., Yilmaz, S., & Ozcan, H. (2015). Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: the relationship between soil properties and heavy metal fractions. Soil and Sediment Contamination: an International Journal, 24(1), 1–15. https://doi.org/10.1080/15320383.2014.907238.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473.

    Article  CAS  Google Scholar 

  • Teh, T., Nik Norulaini, N. A. R., Shahadat, M., Wong, Y., & Mohd Omar, A. K. (2016). Risk assessment of metal contamination in soil and groundwater in Asia: a review of recent trends as well as existing environmental laws and regulations. Pedosphere, 26(4), 431–450. https://doi.org/10.1016/S1002-0160(15)60055-8.

    Article  Google Scholar 

  • Teng, Y., Wu, J., Lu, S., Wang, Y., Jiao, X., & Song, L. (2014). Soil and soil environmental quality monitoring in China: a review. Environment International, 69(Supplement C), 177–199. https://doi.org/10.1016/j.envint.2014.04.014.

    Article  CAS  Google Scholar 

  • Tijhuis, L., Brattli, B., & Sæther, O. M. (2002). A geochemical survey of topsoil in the City of Oslo, Norway. Environmental Geochemistry and Health, 24(1), 67–94. https://doi.org/10.1023/A:1013979700212.

    Article  CAS  Google Scholar 

  • Tóth, G., Hermann, T., Da Silva, M. R., Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88(Supplement C), 299–309. doi:https://doi.org/10.1016/j.envint.2015.12.017.

  • Türkdoğan, M. K., Kilicel, F., Kara, K., Tuncer, I., & Uygan, I. (2003). Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environmental Toxicology and Pharmacology, 13(3), 175–179. https://doi.org/10.1016/S1382-6689(02)00156-4.

    Article  CAS  Google Scholar 

  • UN/ECE (1998) UN/ECE, 07/05/2007. Protocol to the 1979 convention on long-range transboundary air pollution on heavy metals. Geneva: UN/ECE.

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051.

    Article  CAS  Google Scholar 

  • Varrica, D., Tamburo, E., Milia, N., Vallascas, E., Cortimiglia, V., De Giudici, G., Dongarrà, G., Sanna, E., Monna, F., Losno, R. (2014). Metals and metalloids in hair samples of children living near the abandoned mine sites of Sulcis-Inglesiente (Sardinia, Italy). Environmental Research, 134(Supplement C), 366–374. doi:https://doi.org/10.1016/j.envres.2014.08.013.

  • Violintzis, C., Arditsoglou, A., & Voutsa, D. (2009). Elemental composition of suspended particulate matter and sediments in the coastal environment of Thermaikos Bay, Greece: delineating the impact of inland waters and wastewaters. Journal of Hazardous Materials, 166(2–3), 1250–1260. https://doi.org/10.1016/j.jhazmat.2008.12.046.

    Article  CAS  Google Scholar 

  • Wan, X., Dong, H., Feng, L., Lin, Z., & Luo, Q. (2017). Comparison of three sequential extraction procedures for arsenic fractionation in highly polluted sites. Chemosphere, 178(Supplement C), 402–410. https://doi.org/10.1016/j.chemosphere.2017.03.078.

    Article  CAS  Google Scholar 

  • Wang, X. S., & Qin, Y. (2007). Some characteristics of the distribution of heavy metals in urban topsoil of Xuzhou, China. Environmental Geochemistry and Health, 29(1), 11–19. https://doi.org/10.1007/s10653-006-9052-2.

    Article  CAS  Google Scholar 

  • Wang, Y., Sikora, S., Kim, H., Dubey, B., & Townsend, T. (2012). Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate. Waste Management, 32(5), 925–932. https://doi.org/10.1016/j.wasman.2011.11.016.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, Y., Zhang, W., Xu, C., & An, Z. (2014). Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environmental Earth Sciences, 71(3), 1183–1193. https://doi.org/10.1007/s12665-013-2522-9.

    Article  CAS  Google Scholar 

  • Wang, M., Faber, J. H., Chen, W., Li, X., & Markert, B. (2015a). Effects of land use intensity on the natural attenuation capacity of urban soils in Beijing, China. Ecotoxicology and Environmental Safety, 117(Supplement C), 89–95. https://doi.org/10.1016/j.ecoenv.2015.03.018.

    Article  CAS  Google Scholar 

  • Wang, Z., Wang, Y., Chen, L., Yan, C., Yan, Y., & Chi, Q. (2015b). Assessment of metal contamination in coastal sediments of the Maluan Bay (China) using geochemical indices and multivariate statistical approaches. Marine Pollution Bulletin, 99(1), 43–53. https://doi.org/10.1016/j.marpolbul.2015.07.064.

    Article  CAS  Google Scholar 

  • Wang, Q., Xie, Z., & Li, F. (2015c). Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environmental Pollution, 206(Supplement C), 227–235. https://doi.org/10.1016/j.envpol.2015.06.040.

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107. https://doi.org/10.1016/j.microc.2009.09.014.

    Article  CAS  Google Scholar 

  • Werkenthin, M., Kluge, B., & Wessolek, G. (2014). Metals in European roadside soils and soil solution—a review. Environmental Pollution, 189(Supplement C), 98–110. https://doi.org/10.1016/j.envpol.2014.02.025.

    Article  CAS  Google Scholar 

  • WHO/FAO/IAEA. (1996). Trace elements in human nutrition and health. World Health Organization. Switzerland: Geneva.

  • Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142(1), 1–16. https://doi.org/10.1016/j.envpol.2005.09.004.

    Article  CAS  Google Scholar 

  • Wu, Q., Leung, J. Y. S., Geng, X., Chen, S., Huang, X., Li, H., Huang, Z., Zhu, L., Chen, J., & Lu, Y. (2015a). Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Science of the Total Environment, 506(Supplement C), 217–225. https://doi.org/10.1016/j.scitotenv.2014.10.121.

    Article  CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., Zhou, S., Yang, G., Wan, H., & Wu, L. (2015b). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78. https://doi.org/10.1016/j.gexplo.2014.08.009.

    Article  CAS  Google Scholar 

  • Wuana, R. A., Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology 2011.

  • Xia, X., Yang, Z., Li, G., Yu, T., Hou, Q., & Mutelo, A. M. (2017). Practicability of monitoring soil Cd, Hg, and Pb pollution based on a geochemical survey in China. Chemosphere, 172(Supplement C), 217–224. https://doi.org/10.1016/j.chemosphere.2016.12.082.

    Article  CAS  Google Scholar 

  • Xiao, R., Wang, S., Li, R., Wang, J. J., & Zhang, Z. (2017). Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety, 141(Supplement C), 17–24. https://doi.org/10.1016/j.ecoenv.2017.03.002.

    Article  CAS  Google Scholar 

  • Xie, Z. M., & Lu, S. G. (2000). Trace elements and environmental quality. In Q. L. Wu (Ed.), Micronutrients and biohealth (pp. 208–216). Guiyan, China: Guizhou: Sci. Technol. Press.

    Google Scholar 

  • Xu, Z. Q., Ni, S. J., Tuo, X. G., & Zhang, C. J. (2008). Calculation of heavy metals toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science Technology, 31(2), 112–115.

    CAS  Google Scholar 

  • Yang, J. Y., Yang, X. E., He, Z. L., Chen, G. C., Shentu, J. L., & Li, T. Q. (2004). Adsorption–desorption characteristics of lead in variable charge soils. Journal of Environmental Science and Health, Part A, 39(8), 1949–1967.

    Article  CAS  Google Scholar 

  • Yang, Y., Campbell, C. D., Clark, L., Cameron, C. M., & Paterson, E. (2006). Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63(11), 1942–1952. https://doi.org/10.1016/j.chemosphere.2005.10.009.

    Article  CAS  Google Scholar 

  • Yaroshevsky, A. A. (2006). Abundances of chemical elements in the Earth’s crust. Geochemistry International, 44(1), 48–55. https://doi.org/10.1134/S001670290601006X.

    Article  Google Scholar 

  • Ye, F., Huang, X., Zhang, D., Tian, L., & Zeng, Y. (2012). Distribution of heavy metals in sediments of the Pearl River Estuary, Southern China: Implications for sources and historical changes. Journal of Environmental Sciences, 24(4), 579–588. https://doi.org/10.1016/S1001-0742(11)60783-3.

    Article  CAS  Google Scholar 

  • Yu, X., Yan, Y., & Wang, W. X. (2010). The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China. Marine Pollution Bulletin, 60(8), 1364–1371. https://doi.org/10.1016/j.marpolbul.2010.05.012.

    Article  CAS  Google Scholar 

  • Zahida, K., Bilal, A. Q., Majid, M., & Salman, Q. (2014). Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi-A multivariate spatio-temporal analysis. Ecological Indicators, 42, 20–31.

    Article  CAS  Google Scholar 

  • Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470(Supplement C), 925–933. https://doi.org/10.1016/j.scitotenv.2013.10.017.

    Article  CAS  Google Scholar 

  • Zhang, X. Y., Lin, F. F., Wong, M. T. F., Feng, X. L., & Wang, K. (2008). Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environmental Monitoring and Assessment, 154(1), 439. https://doi.org/10.1007/s10661-008-0410-7.

    Google Scholar 

  • Zhang, Z., Juying, L., Mamat, Z., & Qing Fu, Y. (2016). Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicology and Environmental Safety, 126, 94–101. https://doi.org/10.1016/j.ecoenv.2015.12.025.

    Article  CAS  Google Scholar 

  • Zhang, G., Bai, J., Xiao, R., Zhao, Q., Jia, J., Cui, B., & Liu, X. (2017). Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere, 184(Supplement C), 278–288. https://doi.org/10.1016/j.chemosphere.2017.05.155.

    Article  CAS  Google Scholar 

  • Zhao, S., Feng, C., Wang, D., Liu, Y., & Shen, Z. (2013). Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation. Chemosphere, 91(7), 977–984. https://doi.org/10.1016/j.chemosphere.2013.02.001.

    Article  CAS  Google Scholar 

  • Zhao, L., Xu, Y., Hou, H., Shangguan, Y., & Li, F. (2014). Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Science of the Total Environment, 468(Supplement C), 654–662. https://doi.org/10.1016/j.scitotenv.2013.08.094.

    Article  CAS  Google Scholar 

  • Zhu, H., Yuan, X., Zeng, G., Jiang, M., Liang, J., Zhang, C., Yin, J., Huang, H., Liu, Z., & Jiang, H. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 22(6), 1470–1477. https://doi.org/10.1016/S1003-6326(11)61343-5.

    Article  CAS  Google Scholar 

Download references

Funding

Authors thank for support of Project No. FCH-S-17-4766 “Assessment of pollution in environmental compartments” funded by the Faculty of Chemistry (Brno University of Technology) and Project No. LO1203 “Regional Materials Science and Technology Centre-Feasibility Program” funded by the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Doležalová Weissmannová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weissmannová, H.D., Pavlovský, J. Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environ Monit Assess 189, 616 (2017). https://doi.org/10.1007/s10661-017-6340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6340-5

Keywords

Navigation